GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V(NEW) EXAMINATION – SUMMER 2022

Subject Code:3151909

Subject Name: Heat Transfer

Time:02:30 PM TO 05:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

MARKS

Date:04/06/2022

Total Marks: 70

- Q.1 (a) State how density of fluid play an important role in natural 03 convection heat transfer?
 - (b) Write Fourier rate equation of heat transfer by conduction. Give 04 units of each parameter appearing in this equation.
 - (c) Derive general heat conduction equation in Cartesian coordinates and prove that the steady state heat transfer equation without heat generation is

 $\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2} = 0$

Q.2 (a) As shown in the figure, thickness of plaster is t_p, thickness of glass window is t_g, thickness of brick wall is t_b, and the thermal conductivity for plaster, brick wall and glass is k_p, k_b and k_g respectively. Inner temperature is T_i and outer temperature is T_o. Draw thermal circuit for the given figure and write equation of heat transfer.

- (b) Give applications with explanation where poor thermal conductivity of air restricts the heat transmission by conduction.
- (c) A steel rod of thermal conductivity 30W/m-deg is 1 cm in diameter and 5 cm long protrudes from a wall which is maintained at 100° C. The rod is insulated at the tip and is exposed to an environment with convective heat transfer coefficient of 50W/m²-deg and t_a= 30° C. Calculate the fin efficiency, temperature at the tip of fin and the rate of heat dissipation.

04

07

	(c)	A thermometric pocket is a hollow tube of thermal conductivity of 82 W/m-deg having outer and inner diameter of 18 mm and 12 mm respectively. The pocket extends upto 6 cm depth from the wall of a 18 cm diameter tube which carries hot fluid. The heat transfer coefficient between the pocket and fluid is prescribed by the following relation $N_u=0.175(Re)^{0.62}$ Make the calculations for the error in temperature measurement. Considering following data: Fluid temperature is 150° C and tube wall temperature 50° C. Reynolds Number is 25000 and thermal conductivity of fluid is	07
Q.3	(a)	0.04 W/m-deg.Enlist factors need consideration for the optimum design of fins.	03
	(a) (b)	Show the temperature variation along the length of heat	03 04
		 exchanger when (1) Steam condenses on the outside of a condenser tube with water flowing inside the tube as coolant (2) Hot fluid used for evaporating another liquid 	
	(c)	Working in terms of inlet and outlet temperatures of the fluids	07
		and overall heat transfer coefficient, develop an expression for the heat transfer from one fluid to another in a conventional	
		parallel flow heat exchanger.	
		OR	
Q.3	(a)	Explain meaning of following as applied to heat exchangers: (1) Heat capacity ratio,	03
		(1) Heat capacity faile, (2) Effectiveness and	
		(3) Number of Transfer Units.	
	(b)	In a chemical plant, a chemical solution is heated from -15°C to -8.5°C in tube in tube parallel flow heat exchanger by a fluid entering at 40°C and leaving at 25.5°C at the rate of 10 kg/min. Determine the heat exchanger area for an overall heat transfer coefficient of 850W/m ² K. For fluid C _P = 4186J/kgK.	04
	(c)	In an application of heat exchanger, the exhaust gas is used to	07
		heat the compressed air so that capacity ratio is very close to	
		unity. Under this situation, show that $\epsilon = \frac{1}{2} [1 - \exp(-2NTU)]$ for parallel flow heat exchanger	
0.4			03
Q.4	(a) (b)	List the salient features of a black body radiation. Radiant energy with an intensity of 800 W/m ² strikes a flat plate	03 04
	(0)	normally. The absorptivity is twice the transmitivity and trice the reflectivity. Determine the rate of absorption, transmission and reflection of energy.	04
	(c)	Prove that total emissive power of a diffused surface is equal to	07
		π times its intensity of radiation.	
04	(e)	OR Cive statements of:	02
Q.4	(a)	Give statements of: (a) Kirchoff's Law	03
		(b) Stefan-Boltzman Law	
		(c) Wein's displacement Law	

2

OR

3

- Prove that $\varepsilon = \frac{E}{E_h}$ where ε is the emissivity of the body, E is the **(b)** emissive power of the body and E_b is the emissive power of the black body.
- The temperature of the flame in a furnace is 1900 K. Take (c) 07 $C_1=0.374 \times 10^{-15} Wm^2$, $C_2=14.4 \times 10^{-3} mK$. Find:

1. Monochromatic energy emission at 1μ per m²

- 2. λ_{max}
- 3. Monochromatic energy emission at λ_{max} and at **1900** K.
- 4. Total energy emitted/ m^2 .

Using usual notations, write dimensions of 0.5 **(a)**

- (1) Dynamic viscosity
- (2) Thermal Conductivity
- (3) Specific Heat
- A steam pipe 60mm in diameter and 3 meter long has been placed 04 **(b)** horizontal in still air environment at 20°C. If the pipe wall is maintained at 300°C, determine the rate of heat loss. At the mean temperature of 160°C, the thermophysical properties of air are as follow:

$$k = 3.64 \times 10^{-2} \text{W/m-deg}$$

$$\nu = 30.09 \times 10^{-6} \text{ m}^2/\text{sec}$$

$$Pr = 0.682 \text{ and}$$

$$\beta = \frac{1}{160+273} = 2.32 \times 10^{-3} \text{ per } K$$

Use following relation for convective heat transfer coefficient,

Nu=0.53(Gr.Pr)^{0.25}

Q.5

(a)

07 (c) Prove that the temperature of a body at any time τ during Newtonian heating or cooling is given by

$$\frac{t - t_a}{t_i - t_a} = exp[-B_i F_o]$$

Where Bi is Biot Number, Fo is Fourier Number, t_a is the ambient temperature and t_i is the initial temperature of the body

03

- **(b)** What assumptions are to be made while deriving differential 04 equation for hydrodynamic boundary layer?
- **(c)** A large vertical flat plate 3 m high and 2 m wide is maintained at 07 75°C and is exposed to atmosphere at 25°C. Calculate the rate of heat transfer.

The thermophysical properties of air are evaluated at the mean temperature and are as follow:

 $\rho = 1.088 \text{ kg/m}^3$; C_p = 1.00 kJ/kg.K; μ = 1.96 × 10⁻⁵ Pa-s k = 0.028 W/mK. Pr = 0.7

Use the following correlation for convective heat transfer coefficient $N_u = 0.1(Gr.Pr)^{1/3}$

03