Seat No	.:	Enro	olment No	
		GUJARAT TECHNOLOGICAL UNI	VERSITY	7
		BE - SEMESTER–V (NEW) - EXAMINATION – S	SUMMER 20	18
Subjec	t Co	ode:2151909	Date:04/05/	2018
Subjec	t No	ame·Heat Transfer		
Timod	17.2	$\mathbf{A} \mathbf{D} \mathbf{M} \mathbf{f}_{\mathbf{A}} \mathbf{A} 5 \cdot \mathbf{A} \mathbf{A} \mathbf{D} \mathbf{M}$	Tatal Manl	7 0
I ime:	J2:3		I Otal Mark	S: 70
Instruct 1	IONS: A tte	ampt all questions		
1. 2.	Mal	ke suitable assumptions wherever necessary.		
<u> </u>	Figu	res to the right indicate full marks.		
	0			
				MARKS
0.1	(a)	Define following:		03
τ.	. ,	(1) Thermal Conductivity		
		(2) Prandtl Number		
		(3) Solid angle		
	(b)	State significance of critical radius of insulation and	d derive its	04
		equation.		
	(c)	Differentiate	c.	07
		(1) Convection and Radiation modes of heat trans	ster.	
		(2) Natural and Force convection neat transfers.		
Q.2	(a)	Discuss lumped parameter analysis and state its assur	nptions.	03
	(D)	A furnace wall is made up of two layers of thickness	ss 250 mm, $2 W/m^{\circ}C$	04
		respectively. The inside is exposed to gases at 125	$0^{\circ}C$ with a	
		convection coefficient of 25 $W/m^{20}C$ and the inside s	surface is at	
		1100 °C, the outside surface is exposed to air at	25 °C with	
		convection coefficient of 12 W/m ^{2o} C.The overall h	eat transfer	
		coefficient.		
	(c)	Derive equations of temperature distribution and heat	transfer for	07
		composite cylinder separating two fluids considering	heat flow in	
		radial direction.		
		OR	6	~
	(c)	Write general differential equation of heat transfer f	tor constant	07
		area in. From this obtain temperature distribution	n and neat	
03	(a)	Show physical significance of Following non (dimensional	03
Q.3	(a)	numbers: Nu (Nusselt Number) Gr (Grashof Number	r)	05
	()	E-ration - rate of the most have done have	()	0.4
	(\mathbf{D})	Explain concept of thermal boundary layer.	high may be	04
	(\mathbf{C})	considered as a vertical cylinder 300mm in diameter	and 175mm	07
		high in still air at 15 °C. The skin temperature is	$35 ^{\circ}\text{C}$ and	
		emissivity at the skin surface is 0.4. Neglect sweating	g and effect	
		of clothing. The thermo physical properties of air a	t mean film	
		temperature are: $K = 0.0263 \text{ w/m}^{\circ}\text{C}$		
		$v = 15.53 \text{ x } 10^{-6} \text{ m}^2/\text{s}$ pr = 0.7		
		for turbulent flow use $Nu = 0.13$ (Gr x Pr) ^{0.33}		

OR

- Q.3 (a) Explain mean film temperature and bulk mean temperature.
 - (b) A motor cycle cylinder consists of fins having outside diameter 150 mm and total surface area of 0.27 m². Calculate the rate of heat dissipation from cylinder fins when motorcycle is running at 20 m/s speed. The atmospheric air is at 25 °C and average fin surface temperature is 475 °C. the relevant thermo physical properties at average temperature of 250 °C are: K = 0.0427 w/m °C

 $v = 40.61 \text{ x } 10^{-6} \text{ m}^2/\text{s}$ pr = 0.677 for turbulent flow use Nu = 0.036 (Re)^{0.8} (Pr)^{0.33}

- (c) Show by dimensional analysis that for formed convection Nussle07number is the function of Reynolds number and Prandtl number.
- Q.4 (a) Prove that for black body λ_{max} T = Constant. Where λ_{max} = 03 wavelength at which spectral emissive power is maximum and T = absolute temperature of body.
 - (b) Justify that a good absorber is also a good emitter for radiation 04 heat transfer.
 - (c) What is radiation shield? Show that presence of n number of radiation shields reduces the radiation heat transfer by a factor of (n+1).

OR

Q.4	(a)	Define : Shape factor, Irradiation, Emissivity	03
	(b)	The sun emits maximum radiation at $\lambda = 0.52 \ \mu$ m. Assuming sun	04
		to be a black body, calculate the surface temperature of sun and the total emissive power of the sun's surface at that temperature	
	(c)	Define Intensity of radiation. Derive relationship between normal intensity and black body total emissive power	07
Q.5	(a)	What is condensation? How does drop wise condensation differ	03
		from film wise condensation?	
	(b)	Discuss the various regimes in boiling.	04
	(c)	Derive an expression for log mean temperature difference of counter	07
		flow heat exchanger.	
		OR	
Q.5	(a)	With neat sketch explain classification of heat exchangers based on relative motion of fluids.	03
	(b)	What is the fouling factor? Explain their effect in Heat Exchanger design.	04
	(c)	A counter flow heat exchanger is employed to cool oil of specific	07
		heat Cp=2.45 KJ/Kg°C with mass flow rate of 0.55 Kg/sec from	
		115°C to 40 °C by water. The inlet and outlet temperature of	
		cooling water are 15 °C and 75 °C respectively. The overall heat	
		transfer co-efficient is 1450W/m ² °C. Using NTU method,	
		calculate: (i) The mass flow rate of water (ii) The effectiveness of	

heat exchanger (iii) The surface area required.

03

04