GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) EXAMINATION – WINTER 2022

Subject Code:2151909 **Subject Name: Heat Transfer** Time:10:30 AM TO 01:00 PM

Date:04-01-2023

Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			Marks
Q.1	(a)	Define: Fin performance and fin efficiency	03
	(b) (c)	Explain Stefan Boltzmann constant. Discuss velocity boundary layer and thermal boundary layer over a flat	04
		plate. Show the thickness of these layers for different Prandtl numbers.	07
Q.2	(a) (b)	Define: 1) Intensity of Radiation 2) Irradiation 3) Radiosity Making use of Plank's law of distribution, establish the relation for the Wien's displacement law	03 04
	(c)	A furnace wall is made of 20 cm of magnesite brick and 20 cm of common brick. The magnesite brick is exposed to hot gases at 1355 °C and common brick outer surface is exposed to 45 °C room air. The convection and radiation heat transfer coefficient towards air side are 12.5 and 7.5 W/m2 respectively. Thermal conductivities of magnesite and common brick are 3.8 and 0.66 W-m K respectively. Calculate a) heat loss per m2 area of furnace wall and b) maximum temperature to which common brick is subjected.	07
		OR	
	(c)	Saturated steam at 110 °C flows inside a copper pipe (thermal conductivity 450 W/m K) having an internal diameter of 10 cm and and external diameter of 12 cm, the surface resistance on steam side is 12000 W/m2 and that on the outside surface of pipe is 18 W /m2 K. Calculate the heat loss from the pipe if it is located in space at 25 °C.	07
0.3	(a)	State Kirchoff's Law.	03
Q.5	(b)	What is the fouling factor? Explain their effect in Heat Exchanger design.	04
	(c)	Atmospheric air at 25 °C flows parallel to a flat plate at a velocity of 3m/s. Use the exact Blasius solution to estimate the boundary layer thickness and the local skin friction coefficient at x=1 m from leading edge of the plate. Take $v = 15.33 \times 10^{-6} \text{ m}^2/\text{s}$.	07
Q.3	(a)	State Fourier number and Biot number.	03
	(b)	Explain fundamental dimensions. State thermal resistance, thermal diffusivity and convective heat transfer coefficient in fundamental dimensions	04
	(c)	A polished metal pipe 5 cm outside diameter and 370K temperature at the outer surface is exposed at ambient conditions at 295 K temperature. The emissivity of surface is 0.2 and convection coefficient of heat transfer is 11.35 W/ m2 deg. Calculate the heat transfer by radiation and	07

		natural convection per meter length of pipe. Take thermal radiation constant $\sigma_b = 5.67x~10\text{-}8~W/~m^2~K$	
Q.4	(a)	Define shape factor. What is shape factor with respect to itself if the surface is concave, convex or flat?	03
	(b)	Describe the following dimensionless numbers for: Grashoff number 2) Nusselt number	04
	(c)	Derive the interchange factor for infinite parallel planes between non- black bodies	07
		OR	
Q.4	(a)	Compare Sub cooled and Saturated boiling.	03
	(b)	Explain the phenomenon of heat transfer by natural and forced convection	04
	(c)	Calculate the rate of heat loss from a human body which may be considered as a vertical cylinder, 30 cm in diameter and 175 cm high in still air at 15 °C. The skin temperature is 35 °C and emissivity at the skin surface is 0.4. For air: $v = 15.33 \times 10^{-6} \text{ m}^2/\text{s}$, $k = 0.026 \text{ W/m}$ deg. Laminar flow: $10^4 < \text{GrPr} < 10^9$, $\text{Nu} = 0.53 (\text{GrPr})^{0.25}$ Turbulent flow: $10^9 < \text{GrPr} < 10^{12}$, $\text{Nu} = 0.13 (\text{GrPr})^{0.33}$	07
0.5	(a)	Differentiate between Recuperator and Regenerator Heat exchanger	03
Q	(b)	What is critical radius of insulation? Explain its importance in electrical and thermal system.	04
	(c)	Establish an expression for log mean temperature difference for parallel flow heat exchanger	07
		OR	
Q.5	(a)	Define: 1) Effectiveness and NTU related to Heat Exchanger	03
-	(b)	Explain with neat sketch, the various regimes in boiling and explain the condition for the growth of bubbles.	04
	(c)	Hot water having specific heat 4200 J/kg K flows through a heat exchanger at the rate of 4 kg/min with an inlet temperature of 100°C. A cold fluid having a specific heat 2400 J/kg k flows in at a rate of 8 kg/min and with inlet temperature 20°C. Calculate the maximum possible effectiveness if the fluid flow conforms to a) parallel flow arrangement b)counter flow arrangement.	07
