GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-V (NEW) EXAMINATION - SUMMER 2021

Subject Code:3151909
Date:09/09/2021

Subject Name:Heat Transfer

Time:10:30 AM TO 01:00 PM
Total Marks:70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.
MARKS
Q. 1 (a) Write any three assumptions of Nusselt theory for film 03condensation.
(b) Draw boiling curve for water at 1 atm . Pressure and 04Represent different regimes on that.
(c) Steam enters a counter flow heat exchanger dry saturated at 10 bar and leaves at $350{ }^{\circ} \mathrm{C}$. The mass flow of steam is $800 \mathrm{~kg} / \mathrm{min}$. the gas enters the heat exchanger at $650{ }^{\circ} \mathrm{C}$ and mass flow rate is 1350 $\mathrm{kg} / \mathrm{min}$. if the tubes are 30 mm diameter and 3 m long. Determine the number of tubes required.
Neglect the resistance offered by metallic tubes.
Use following data:
Tsat $=180^{\circ} \mathrm{C}$ (At 10 bar $)$
Cps $=2.71 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
Cpg $=1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
Heat transfer co-efficient steam side $=600 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$
Heat transfer co-efficient gas side $=250 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$

Q. 2 (a) Define :

1) Critical thickness of insulation for cylinder
2) Thermal diffusivity
3) Thermal resistance
(b) Determine the overall heat transfer coefficient U_{0} based on the outer surface of a 2.54 cm O.D 2.286 cm I.D. heat exchanger tube ($\mathrm{K}=102 \mathrm{~W} / \mathrm{mK}$).If the heat transfer co-efficient at the inside and outside of the tube are $\mathrm{hi}=5500 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and $\mathrm{ho}=3800 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ respectively and the fouling factors are $\mathrm{R}_{\mathrm{fi}}=\mathrm{R}_{\mathrm{fo}_{0}}=0.0002 \mathrm{~m}^{2}-\mathrm{K} / \mathrm{W}$
(c) Superheated steam at $330^{\circ} \mathrm{C}$ is flowing at $20 \mathrm{~m} / \mathrm{s}$ velocity $(\mathrm{h}=110$ $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$) through a pipe 120 mm in diameter. The temperature of steam is to be measured by putting a pocket in the pipe of 15 mm ID and 1 mm thickness. Pocket material thermal conductivity is $50 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.
4) Determine length of insertion so that error in the thermometer is 0.5%.
5) If pipe wall is maintained at temperature of $40^{\circ} \mathrm{C}$,find temperature measured by thermometer.

OR
(c) A cylindrical hot ingot of 50 mm diameter and 200 mm long is
taken out from the furnace at $800^{\circ} \mathrm{C}$ and dipped into the water till its temperature becomes $500^{\circ} \mathrm{C}$. After that it is exposed to air till its temperature becomes $100^{\circ} \mathrm{C}$. Find the total time required to reduce its temperature from $800^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.
Use following data:
k for ingot $=60 \mathrm{~W} / \mathrm{m}-\mathrm{K}$.
specific heat for ingot $=200 \mathrm{~J} / \mathrm{m}-\mathrm{K}$
$\mathrm{h}_{\text {air }}=20 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}, \mathrm{h}_{\text {water }}=200 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$
Density of ingot material $=800 \mathrm{~kg} / \mathrm{m}^{3}$
Temperature of water and air both $=30^{\circ} \mathrm{C}$
Q. 3 (a) Differentiate fin efficiency and fin effectiveness.
(c) Ait at 1 bar and a temperature $30^{\circ} \mathrm{C}$, dynamic viscosity $=0.06717$ $\mathrm{kg}-\mathrm{ms}$ flows at a speed of $1.2 \mathrm{~m} / \mathrm{s}$ over a flat plate. Determine the boundary layer thickness at of 250 mm and 500 mm from the leading edge of the plate. Also calculate the mass entrapment between these two sections. Assume the parabolic velocity distribution as:
$\frac{u}{U}=\frac{3}{2}\left(\frac{y}{\delta}\right)-\frac{1}{2}\left(\frac{y}{\delta}\right)^{3}$

OR

Q. 4 (a) Write the value of critical Reynolds Number for flow over a flat
plate. Differentiate viscous sub layer and buffer layer.
(b) Velocity distribution in the boundary layer is given by
$\frac{u}{U}=\frac{y}{\delta}$, where u is velocity at distance y from the plate and at $\mathrm{y}=$ $\delta, u=U$. Calculate energy thickness.
(c) Using Buckingham $-\pi$ theorem show that Nusselt number for free
convection is a function of Grashof Number and Prandtl number
Q. 5 (a) State Wien's displacement law and write its significance.

03
(b) With respect to shape factor explain :

1) Superposition rule
2) Summation rule
(c) Consider two large parallel plates one at $727^{\circ} \mathrm{C}$ with the emissivity 0.8 and other $227^{\circ} \mathrm{C}$ with the emissivity 0.4 . A plate of emissivity 0.05 on the both the sides is placed between the plates. Calculate percentage reduction in the heat transfer rate between the two plates as a result of the shield.

OR

Q. 5 (a) Define gray body. Differentiate between surface resistance and space resistance w.r.to radiation heat transfer between two grey bodies.
(b) Calculate the shape factor of cylinder cavity w.r.to itself. Take depth of cavity h and diameter of cylinder is d. it is enclosed with flat surface.
(c) Define radiation shield. Prove that if radiation shield of the emissivity same as the emissivity of two parallel plate is inserted between two parallel plates net heat transfer rate due to radiation is reduced to half as compared to without shield.

