Buoyancy and Metacentric Height

Analytical Method to calculate Metacentric Height

$$
\begin{aligned}
\mathrm{GM} & =\mathrm{BM}-\mathrm{BG} \\
\mathrm{GM} & =\frac{\mathrm{I}}{\mathrm{~V}}-\mathrm{BG}
\end{aligned}
$$

BUOYANCY

Weight of Displaced Fluid

Archimedes Principle :

Whenever a body is immersed wholly or partially in a fluid then it is lifted up by a force equal to the weight of fluid displaced by the body

Whenever a body is immersed wholly or partially in a fluid then it is lifted up by a force equal to the weight of fluid displaced by the body and this Upward force is known as Buoyancy force

$$
\begin{aligned}
F_{B} & =\text { Weight of water displaced by body } \\
& =m^{*} g \\
& =\rho^{*} \text { Volume of water displaced by body } * g \\
& =\rho^{*} g^{*}(h * B * L)
\end{aligned}
$$

Where, $h=$ depth of body immersed in liquid
$B=$ Width of body
L = Length of body

Meta centre

It is defined as a point with respect to which a body oscillates in a liquid, when the body is tilted through a small angle.

Meta centre

It is defined as a point with respect to which a body oscillates in a liquid, when the body is tilted through a small angle.

It can be also defined as an intersecting point between neutral axis line of the body and line of action of force of buoyancy.

Meta-centric height

It is the distance between meta centre and centre of gravity of the floating body.

$\mathrm{GM}=$ Meta-centric height
$\mathrm{GM}=\mathrm{BM}-\mathrm{BG}$

Meta-centric height

It is the distance between meta centre and centre of gravity of the floating body.

Moment due to increased weight
$=$ Moment due to buoyancy force with change of centre of buoyancy

Moment = Force * Perpendicular distance

* Anabutizal meshed to fund metceentric herght

$$
\begin{aligned}
& \text { Quen of strip }=x \theta d x \\
& \text { Valuene of strep }=x \theta d \times l
\end{aligned}
$$

 gam of bwuyaney force on hrshtside of strip

$$
d F_{B}=S \vee g=S \times \theta Q d \times g
$$

$O A A^{\prime}$

$$
d F_{B}=\rho g x \theta l d x
$$

$$
\begin{aligned}
\text { moment of cowple } & =d F_{B}(x+x) \\
& =99 x \theta l d x(2 x)
\end{aligned}
$$

Moment of where edre

$$
=F \times 2 \times
$$

$$
=\int 2390 l x^{2} d x
$$

$F_{B} \times B B_{1} \rightarrow$ Canseby Displarent of Centre of byoyaney

$$
F B \times B B_{1}=\int 2 \rho g \theta l x^{2} d x
$$

$$
\begin{aligned}
& \int 2 \rho 90 l x^{2} d x=F B \times B B_{1} \\
& =F B \times B M \sin \theta \\
& \sin \theta=\frac{B B_{1}}{B m} \\
& B B_{1}=B M \sin \theta \\
& \text { B } \\
& B_{1} \\
& \left(F_{B}=W\right) \\
& \sin \theta=\theta=\tan \theta \\
& l d x=d A \\
& \begin{aligned}
W \times B M & =\int 299 x^{2} d A \\
& =9 g \int 2 x^{2} d A
\end{aligned} \\
& \begin{aligned}
W \times B M & =\int 299 x^{2} d A \\
& =\rho g \int 2 x^{2} d A
\end{aligned} \\
& W \times B M=99 I \\
& B M=\frac{3 / 9 I}{5 / 9 y} \\
& \int 2 x^{2} d A=I \\
& \omega=\rho g \forall \\
& \left\{\begin{array}{l}
M \\
G \\
B
\end{array}\right. \\
& B M=\frac{I}{\forall} \\
& \omega \times B M \sin \theta=\int 289 \phi l x^{2} d x
\end{aligned}
$$

$$
\begin{aligned}
& B M=\frac{I}{\forall} \quad B M=G M+B G \\
& G M+B G=\frac{I}{\forall} \\
& G M=\frac{I}{\forall}-B G
\end{aligned}
$$

GM = mefceentiz herght

