Path line

The path Ttureal by a sinsle flurd paurries in matron over a Plurod of time

Stream Line

* An imasinany line
* or instant Tangent at streumline local veranty veetor

$$
\tan \theta=\frac{v}{u} \Rightarrow m=\frac{d \varphi}{d x}
$$

 streamline

Flurd fow fierd

$$
\begin{aligned}
& \frac{d x}{u}=\frac{d y}{y}=\frac{d_{2}}{\omega} \\
& \frac{v}{u}=\frac{d_{1}}{d x}
\end{aligned}
$$

$$
\frac{d x}{u}=\frac{d \varphi}{v}
$$

$$
V d x-u d y=0
$$

Stream Tube

Rotational and irrotational flow

A

Linear Translation and Deformation

$$
\begin{aligned}
& \text { Volunty }=\frac{\text { Distance }}{\text { tine }} \\
& D=v \cdot t
\end{aligned}
$$

linear itenslastion

Linear Translation and Deformation
change in velearty

$$
=\left(\frac{\partial v}{\partial y} \cdot d y\right)
$$

$$
\begin{array}{rl}
v & =\frac{d}{t} \\
t=t+d t & d=v \cdot t \\
u^{\prime}=u+\frac{\partial u}{\partial x} \cdot d x \\
u^{\prime}-u & =\left(\frac{\partial u}{\partial x} \cdot d x\right)
\end{array}
$$

Chancre in veleapory

Angular Translation and Deformation

$\omega=0$
$\omega \neq 0$

$$
\begin{aligned}
& \omega_{2}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial y}{\partial y}\right) t \\
& \omega_{*}=\frac{1}{2}\left(\frac{\partial \omega}{\partial s}-\frac{\partial v}{\partial z}\right)
\end{aligned}
$$

$$
\xi=2 \omega
$$

Circulation and vorticity

$$
\Gamma=\oint V \cos \alpha d s
$$

Gamma

closed cure in flow fiend

Circulation and vorticity

$$
\begin{aligned}
& \text { y } u+\underset{\longrightarrow}{\partial y} d y \quad \Gamma=\oint v \cos \alpha d s \\
& v \uparrow \overbrace{}^{C} \uparrow{ }^{C} d y v+\frac{\partial U}{\partial x} \cdot d x \\
& A \xrightarrow{u} D \\
& d r=u d x+\left(v+\frac{\partial v}{\partial x} \cdot d x\right) d y \\
& \rightarrow \quad x \\
& d r=u d x+\int \frac{u}{4}-\left(4+\frac{\partial y}{\partial y} d y\right) d x \\
& -v d y \\
& d \Gamma=\left(\frac{\partial v}{\partial x}-\frac{\partial \varphi}{\partial y}\right) \frac{d x d \rho}{A} \quad \xi=\frac{\partial v}{\partial x}-\frac{\partial y}{\partial y} \\
& d r=\int \operatorname{cog} d A
\end{aligned}
$$

A fluid flow is given by $V=18 x^{\wedge} 3 i-20 x^{\wedge} 2 y j$. State flow is rotational or irrotational

Given Data

$$
\begin{aligned}
& V=18 x^{3} i-20 x^{2} y j \\
& V=4 i+v j \\
& u=18 x^{3} \quad v=-20 x^{2} y \\
& v=-20 x^{2} y \quad \frac{\partial v}{\partial x}=-40 x y \\
& \frac{\partial y}{\partial y}=0
\end{aligned}
$$

$$
\begin{aligned}
\omega_{2} & =\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial y}{\partial y}\right) \\
\omega_{2} & =\frac{1}{2}(-40 \times y-0) \\
\omega_{2} & =-20 \times y \\
\omega_{2} & \neq 0
\end{aligned}
$$

Retceronal

Stream Function

Assumption
2-D

$$
s=c
$$

$$
\begin{aligned}
& \frac{\partial \psi}{\partial x}=y \\
& \frac{\partial \psi}{\partial y}=x
\end{aligned}
$$

Dischase Per lent thicicurs of flow

$d \psi=u d y-v d x$

$$
\begin{aligned}
v\left(f_{s} \cdot 1\right) & =u(d y \times 1)+-v\left(d_{x \times 1}\right) \\
v d s & =u d y-v d x
\end{aligned}
$$

Stream Function

$$
\begin{aligned}
& \int d \psi=\int v d y-\int u d x \\
& \psi=f(x, y) \\
& \text { Toted dexivemes } \\
& \quad d \psi=\frac{\partial \psi}{\partial x} \cdot d x+\frac{\partial \psi}{\partial y} \cdot d y \text { - II } \\
& v=-\frac{\partial \psi}{\partial x} \quad u=\frac{\partial \psi}{\partial y}
\end{aligned}
$$

Stream Function

1) Streem funurion is constant along strembline
2) Streem fumetion for irriotational frow satisfies the lerplare en n 3) 11 satisfies the contimuity ean
3) Streum lone $\frac{d x}{4}=\frac{d y}{v}=\frac{d z}{\omega}$
$2-D$

$$
\begin{aligned}
\Rightarrow & \frac{d x}{u}=\frac{d y}{v} \\
& u d y-v d x=0 \\
d \psi= & u d y-v d x=0 \\
& d \psi=0 \quad \int d \psi=0 \Rightarrow \psi=C
\end{aligned}
$$

Stream Function
27

$$
\begin{array}{rlrl}
\xi_{2} & =\left(\frac{\partial v}{\partial x}-\frac{\partial \psi}{\partial y}\right) & \psi & =f(x, y) \\
& =\frac{\partial}{}=\frac{\partial \psi}{\partial y}\left(\frac{\partial \psi}{\partial x}\right)-\frac{\partial}{\partial y}\left(\frac{\partial \psi}{\partial y}\right) & & =-\frac{\partial \psi}{\partial x} \\
& =-\left[\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial \psi^{2}}\right] & \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial \psi^{2}}=0
\end{array}
$$

3) $2-D$

$$
\begin{aligned}
& \frac{\partial \psi}{\partial x}+\frac{\partial v}{\partial y}=0 \\
& \frac{\partial}{\partial x}\left(\frac{\partial \psi}{\partial \varphi}\right)+\frac{\partial}{\partial y}\left(-\frac{\partial \psi}{\partial x}\right)=\frac{\partial^{2} \psi}{\partial x \partial y}-\frac{\partial^{2} \psi}{\partial x \partial y}=0
\end{aligned}
$$

Velocity Potential
2-1
$\oint(x, 4, t)$
$\phi(x, y)$
$V=u i+v j$
steudy
incompressible $\phi(x, y)$

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=\text { velvery }-x=u \\
& \frac{\partial \phi}{\partial y}=\text { velunity }-y=v
\end{aligned}
$$

$$
\frac{\partial \phi}{\partial x}=u \quad \frac{\partial \phi}{\partial y}=v
$$

Characteristics Potential Function

1. For equipotential line, the Potential function is constant

$$
\begin{array}{rl}
\text { Total deuveringes of } \phi(x, y) & \frac{\partial \phi}{\partial x}=4 \frac{\partial \phi}{\partial f}=v \\
d \phi=\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y & \\
d \phi=u d x+v d y & d \phi=0 \\
u d x+v d y=0 & \\
\frac{d y}{d x}=-\frac{u}{v} & \rightarrow \text { eamiposential line }
\end{array}
$$

Characteristics Potential Function
2. Velocity Potential satisfies the condition for irrotational flow

$$
\begin{array}{rlr}
\xi_{2} & =\left(\frac{\partial v}{\partial x}-\frac{\partial y}{\partial y}\right) & u=\frac{\partial \phi}{\partial x} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial \phi}{\partial y}\right)-\frac{\partial}{\partial y}\left(\frac{\partial \phi}{\partial x}\right) & v=\frac{\partial \phi}{\partial y} \\
& =\frac{\partial^{2} \phi}{\partial x \partial y}-\frac{\partial^{2} \phi}{\partial x \partial y} & \\
& =0
\end{array}
$$

Characteristics Potential Function
2. Velocity Potential function satisfies Laplace equation

2-1 Contruntry en n

$$
\begin{gathered}
\frac{\partial y}{\partial x}+\frac{\partial v}{\partial y}=0 \\
\frac{\partial}{\partial x}\left(\frac{\partial \phi}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{\partial \phi}{\partial y}\right) \\
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0 \rightarrow
\end{gathered}
$$

$$
\frac{\partial \phi}{\partial x}=u \quad \frac{\partial \phi}{\partial y}=v
$$

Relation between stream function and Velocity Potential

$$
\begin{aligned}
& \psi=f(x, y) \\
& \frac{\partial \psi}{\partial x}=-V \\
& \frac{\partial \psi}{\partial y}=u
\end{aligned}
$$

$$
v=-\frac{\partial \psi}{\partial x}
$$

$$
u=\frac{\partial \psi}{\partial y}
$$

$$
\frac{\partial \phi}{\partial y}=-\frac{\partial \psi}{\partial x}
$$

$$
\begin{aligned}
& \phi=f(x, \psi) \\
& \frac{\partial \phi}{\partial x}=\psi \quad u=\frac{\partial \phi}{\partial x} \\
& \frac{\partial \phi}{\partial y}=v \quad V=\frac{\partial \phi}{\partial y} \\
& \frac{\partial \psi}{\partial y}=\frac{\partial \phi}{\partial x} \subset-R
\end{aligned}
$$

Relation between stream function and Velocity Potential
$\phi=c$ emerpotantal line
$\Psi=c$ stream line
m

$$
\begin{aligned}
m_{2} & =-\frac{u}{v} \times \frac{v}{u} \\
& =-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Slope }=\frac{d y}{d x}=\frac{\left(-\frac{\partial \phi}{\partial x}\right)}{\left(\frac{\partial \phi}{\partial u}\right)}=-\frac{u}{v} \\
& m_{1} \text { Slope }=\frac{d \psi}{d x}=\frac{\left(-\frac{\partial \varphi}{\partial x}\right)}{\left(\frac{\partial \varphi}{\partial \varphi}\right)}=\frac{v}{u}
\end{aligned}
$$

Relation between stream function and Velocity Potential

Q. The stream function for two dimensional flow is given by $\Psi=$ $2 x y+25$, calculate the velocity at point $A(2,1)$. Find the velocity potential function φ
given data

$$
\begin{aligned}
& \psi=2 x y+25 \\
& V=? \quad A(2,1) \\
& \phi=?
\end{aligned}
$$

$$
\begin{aligned}
u & =\frac{\partial \psi}{\partial y}=\frac{\partial}{\partial y}(2 x y+25)=2 x \\
v & =-\frac{\partial \psi}{\partial x}=-\frac{\partial}{\partial x}(2 x 4+25)=-2 y \\
\bar{V} & =4 i+v j=2 x i+(-24) j \\
\bar{V}_{(2,1)} & =4 i-2 j \\
|\bar{V}| & =\sqrt{4^{2}+2^{2}}=4.4
\end{aligned}
$$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=4=2 x \text { - (I) by integeating } \cos ^{n}(I) \\
& \int d \phi=\int 2 x d x \\
& \frac{\partial \phi}{\partial y}=v=-2 y \text { - (I) } \quad \phi=2 \frac{x^{2}}{2}+c \\
& \phi=x^{2}+c \rightarrow \\
& \frac{\partial \phi}{\partial y}=\frac{\partial c}{\partial y}=-2 y \\
& \frac{\partial c}{\partial y}=-2 y \\
& \int d c=\int-2 y d y=-2 \frac{y^{2}}{\not 7} \Rightarrow c=-y^{2} \quad \phi=x^{2}-y^{2}
\end{align*}
$$

