GYANMANJARI INSTITUTE OF TECHNOLOGY

Department of Mechanical Engineering

LECTURE AND LAB/TUTORIAL PLAN

Course Code:	2141906	Year/Semester:	BE II Year/ 4 TH Semester
Course Name :	Fluid Mechanics	Academic Year :	20116-17/ EVEN
L –T- P :	4-0-2	Credit:	6
Course Detail:	Theory and Practical	Term Start Date:	16/01/2017
Course Coordinator :	Prof.Krunal Khiraiya	Term End Date:	18/05/2017
Team of Instructors:	Mr. Yogesh Rathod	Class Test 1:	19/2/2017
		Class Test 2:	10/3/2017
		Mid Term Exam:	27/3/2017

Gyanmanjari Institute of Technology

Sidsar Road. Bhavnagar

Department of Mechanical Engineering

Lesson Plan

Academic Year : 2016-17 Second Term

Name of Teacher : Krunal Khiraiya

Subject : FM

Sem. : 4th sem

Name of Department : Mechanical Engineering

Hrs./Week : 4

Subject: FM		Hrs./Week: 4				
Theory/Tutorial: Theory			Days: Tuesday Wednesday Thursday Friday			ny
Sr. No.	Name of Unit/Tonics		Planned Date	Actual Date	Teaching Aid Code	Remarks
1	Unit 1Fluids and Their Properties	3				
A	Introduction of fluid, fluid classifications, hypothesis of continuum, Shear stress in a moving fluid, molecular structure of material,	1	17/1/2017		5	
В	fluid density, viscosity, causes of viscosity in gases and liquids	1	18/1/2017		5	
C	surface tension, capillary effect, vapor pressure, cavitation, compressibility and the bulk modulus	1	19/1/2017		5	
2	Unit 2 Pressures and Head:	5				
A	Types of Pressure, Pascal's law of pressure at a point	1	20/2/2017		5	
В	variation of pressure vertically in a fluid under gravity, equality of pressure at the same level in a static fluid	1	20/2/2017		2	
C	general equation for the variation of pressure due to gravity from a point to point in a static fluid	1	24/2/2017		2,5	
D	pressure and head, the hydrostatic paradox	1	25/1/2017		2	
Е	pressure measurements using Elastic Pressure Transducers, Force Balance Pressure gauge, Electrical Pressure Transducers	1	27/1/2017		2	
3	Unit 3 Static Forces on Surface and Buoyancy	8				
A	Fluid static, action of fluid pressure on surface	1	27/1/2017		5	
В	resultant force and center of pressure on a plane surface under uniform pressure	1	31/1/2017		5	
С	resultant force and center of pressure on a plane surface immersed in a liquid	1	1/2/2017		5	
D	pressure diagrams, forces on a curved surface due to hydrostatic pressure	1	2/2/2017		2,5	
Е	buoyancy, equilibrium of floating bodies	1	Cover in Lab		2,5	
F	stability of a submerged body, stability of floating bodies	1	Cover in Lab		2	
G	determination of the metacentric height, determination of the position of the metacentre relative to the center of buoyancy	1	Cover in Lab			
Н	Numerical	1	3/2/2017			
4	Unit 4Motion of Fluid Particles and Streams	4				
A	Fluid flow, different types of flow, frames of reference, analyzing fluid flow	1	3/2/2017		5	
В	motion of a fluid particle, acceleration of a fluid particle, discharge and mean velocity	1	5/2/2017		5	
С	continuity of flow, continuity equations for 2-D and 3-D flow in Cartesian coordinates of system	1	5/2/2017		2,5	

D	Numerical	1	7/2/2017	2
5	Unit 5 The Energy Equation and its Application	8		
A	Momentum and fluid flow, Momentum equation for 2-D and 3-D flow along a stream line	1	8/2/2017	5
В	momentum correction factor	1	9/2/2017	5
С	Euler's equation of motion along a stream line	1	10/2/2017	5
D	Mechanical energy of a flowing fluid Bernoulli's theorem	1	14/2/2017	5
Е	kinetic energy correction factor	1	15/2/2017	5
F	pitot tube, determination of volumetric flow rate via pitot tube, changes of pressure in tapering pipe	1	16/2/2017	5
G	principle of venturimeter, pipe orifices	1	17/2/2017	5
Н	theory of small orifices discharging to atmosphere, theory of large orifices	1	19/2/2017	2,5
I	Rotameter, elementary theory of notches and weirs, flow in a curved path	1	19/2/2017	2,5
6	Unit 6 Two-Dimensional Ideal Fluid Flow	4		
A	Rotational and ir-rotational flow, circulation and vorticity	1	21/2/2017	2,5
В	streamlines and the stream functions, velocity potential and potential flow	1	22/2/2017	5
C	relation between stream function and velocity potential; flow nets	1	23/2/2017	5
D	stream function and velocity potential for uniform flow, vortex flow.	1	28/2/2017	2,5
7	Unit 7 Dimensional Analysis And Similarities	5		
A	Dimension reasoning, dimensional homogeneity	1	1/3/2017	5
В	dimensional analysis using Rayleigh's method	1	2/3/2017	5
С	Buckingham π -theorem, significance of dimensionless	1	3/3/2017	5
D	use of dimensionless numbers in experimental investigation	1	5/3/2017	5
Е	geometric similarity, dynamic similarity, Kinematic similarity, model testing-Model laws, Undistorted and Distorted models.	1	5/3/2017	5
8	Unit 8 Viscous Flow	6		
A	Reynolds number and Reynolds experiment	1	7/3/2017	5
В	flow of viscous fluid through circular pipe- Hagen Poiseuille formula	1	8/3/2017	5
С	Flow of viscous fluid between two parallel fixed plates	1	9/3/2017	5
D	power absorbed in viscous flow through - journal, foot step and collar bearing	1	10/3/2017	5
Е	movement of piston in dash pot	1	14/3/2017	5
F	Methods of measurement of viscosity.	1	15/3/2017	5
9	Unit 9 Turbulent Flow	4		
A	Expression for coefficient of friction -Darchy Weishbach Equation,	1	16/3/2017	5

В	Expression for coefficient of friction -Darchy Weishbach Equation,	1	19/3/2017	5		
С	Moody diagram resistance of smooth and rough pipes		19/3/2017	5		
D	shear stress and velocity distribution in turbulent flow through pipes.	1	21/3/2017	5		
10	Unit 10 Flow through pipes	6				
A	Major energy losses, Minor energy losses	1	22/3/2017	5		
В	Hydraulic gradient and total energy lines	1	23/3/2017	5		
С	Pipes in series and parallel, Equivalent pipes	1	24/3/2017	5		
D	Siphon, power transmission through pipe	1	5/4/2017	5		
Е	Flow through nozzle at end of pipe	1	6/4/2017	5		
F	Water hammer in pipes	1	7/4/2017	5		
11	Unit 11 Compressible Flow	3				
A	Basic equations for one dimensional compression	1	11/4/2017	2,	,5	
		_				
В	Pressure wave propagation, sound velocity in fluid	1	12/4/2017	2,	,5	
B C		1	12/4/2017	2,		
	fluid	ļ				
	fluid Mach number, Stagnation properties	ļ				
С	fluid Mach number, Stagnation properties Teaching Aid Code:	ļ			,5	
C 1	fluid Mach number, Stagnation properties Teaching Aid Code: O.H.P	ļ		2,	,5	
1 2	fluid Mach number, Stagnation properties Teaching Aid Code: O.H.P L.C.D PROJECTER	ļ		2,	,5	_
1 2 3	fluid Mach number, Stagnation properties Teaching Aid Code: O.H.P L.C.D PROJECTER MODEL	ļ		2,	.5	
C 1 2 3 4 5	fluid Mach number, Stagnation properties Teaching Aid Code: O.H.P L.C.D PROJECTER MODEL CHART	1		2,	.5	

Reference Books:

- 1. Fluid Mechanics and Fluid Power Engineering by D.S. Kumar, S.K.Kataria & Sons
- 2. Fluid Mechanics and Hydraulic Machines by R.K. Bansal, Laxmi Publications
- 3. Fluid Mechanics and Hydraulic Machines by R.K. Rajput, S.Chand & Co.
- 4. Fluid Mechanics by Frank .M. White, McGraw Hill Publishing Company Ltd.
- 5. Fundamentals of Fluid Mechanics by Munson, Wiley India Pvt. Ltd
- 6. Fluid Mechanics by A. K. Mohanty, PHI Learning Pvt. Ltd.
- 7. Laboratory Manual Hydraulics and Hydraulic Machines by R V Raikar