1. Inertia Force, F_i

It is the product of mass and acceleration of the flowing fluid and acts in the direction opposite to the direction of acceleration.
 It always exists in the fluid flow problems

- 1. Inertia Force, F_i
- 2. Viscous Force, F_v

>It is equal to the product of shear stress due to viscosity and surface area of the flow.

- 1. Inertia Force, F_i
- 2. Viscous Force, F_v
- 3. Gravity Force, F_g

 \succ It is equal to the product of mass and acceleration due to gravity of the flowing fluid.

- 1. Inertia Force, F_i
- 2. Viscous Force, F_v
- 3. Gravity Force, F_g
- 4. Pressure Force, F_p

 \succ It is equal to the product of pressure intensity and cross sectional area of flowing fluid

- 1. Inertia Force, F_i
- 2. Viscous Force, F_v
- 3. Gravity Force, F_g
- 4. Pressure Force, F_p
- 5. Surface Tension Force, F_s

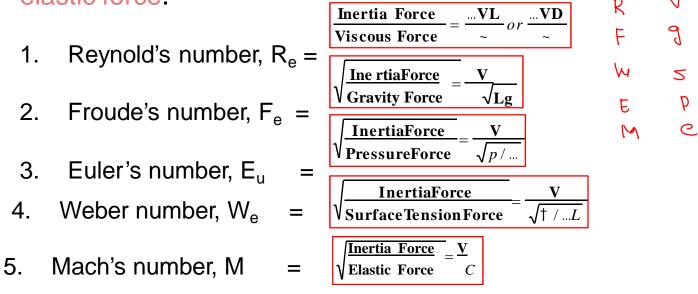
 \succ It is equal to the product of surface tension and length of surface of the flowing

- 1. Inertia Force, F_i
- 2. Viscous Force, F_v
- 3. Gravity Force, F_g
- 4. Pressure Force, \tilde{F}_p
- 5. Surface Tension Force, F_s
- 6. Elastic Force, F_e

 \succ It is equal to the product of elastic stress and area of the flowing fluid

Dimensionless Numbers

Dimensionless numbers are obtained by dividing the inertia force by viscous force or gravity force or pressure force or surface tension force or elastic force. R = VI = VI



Reynold's Number (R_e **).** It is defined as the ratio of inertia force of a flowing fluid and the viscous force of the fluid. The expression for Reynold's number is obtained as

Inertia force
$$(F_i)$$

= Mass × Acceleration of flowing fluid
= $\rho \times \text{Volume} \times \frac{\text{Velocity}}{\text{Time}} = \rho \times \frac{\text{Volume}}{\text{Time}} \times \text{Velocity}$
= $\rho A V^2$
Viscous force (F_v)
= Shear stress × Area $\left\{ \because \tau = \mu \frac{du}{dy} \therefore \text{ Force} = \tau \times \text{Area} = \tau \times A$
= $\tau \times A$
= $\left(\mu \frac{du}{dy}\right) \times A = \mu \cdot \frac{V}{L} \times A$ $\left\{ \because \frac{du}{dy} = \frac{V}{L} \right\}$

By definition, Reynold's number,

In case of pipe flow, the linear dimension L is taken as diameter, d. Hence Reynold's number for pipe flow,

$$R_e = \frac{V \times d}{v}$$
 or $\frac{\rho V d}{\mu}$.

Froude's Number (F_e). The Froude's number is defined as the square root of the ratio of inertia force of a flowing fluid to the gravity force. Mathematically, it is expressed as

$$F_{e} = \sqrt{\frac{F_{i}}{F_{g}}}$$
where F_{i} from equation (12.11) = ρAV^{2}
and F_{g} = Force due to gravity
= Mass × Acceleration due to gravity
= $\rho \times \text{Volume} \times g = \rho \times L^{3} \times g$ { \because Volume = L^{3} }
= $\rho \times L^{2} \times L \times g = \rho \times A \times L \times g$ { \because $L^{2} = A = \text{Area}$ }
 \therefore $F_{e} = \sqrt{\frac{F_{i}}{F_{g}}} = \sqrt{\frac{\rho AV^{2}}{\rho ALg}} = \sqrt{\frac{V^{2}}{Lg}} = \frac{V}{\sqrt{Lg}}$

Euler's Number (E_{\mu}). It is defined as the square root of the ratio of the inertia force of a flowing fluid to the pressure force. Mathematically, it is expressed as

$$E_u = \sqrt{\frac{F_i}{F_P}}$$

where F_p = Intensity of pressure × Area = $p \times A$ and $F_i = \rho A V^2$

$$\therefore \qquad E_{u} = \sqrt{\frac{\rho A V^{2}}{p \times A}} = \sqrt{\frac{V^{2}}{p / \rho}} = \frac{V}{\sqrt{p / \rho}}$$

Weber's Number (W.). It is defined as the square root of the ratio of the inertia force of a flowing fluid to the surface tension force. Mathematically, it is expressed as

Weber's Number.

$$W_e = \sqrt{\frac{F_i}{F_e}}$$

where F_i = Inertia force = $\rho A V^2$

 $F_* =$ Surface tension force and

= Surface tension per unit length × Length = $\sigma \times L$

 $M = \frac{V}{C}$.

$$\therefore \qquad W_e = \sqrt{\frac{\rho A V^2}{\sigma \times L}} = \sqrt{\frac{\rho \times L^2 \times V^2}{\sigma \times L}} \qquad \{ \because A = L^2 \}$$

$$= \sqrt{\frac{\rho L \times V^2}{\sigma}} = \sqrt{\frac{V^2}{\sigma/\rho L}} = \frac{V}{\sqrt{\sigma/\rho L}}.$$

Mach's Number (M). Mach's number is defined as the square root of the ratio of the inertia force of a flowing fluid to the elastic force. Mathematically, it is defined as

$$M = \sqrt{\frac{\text{Inertia force}}{\text{Elastic force}}} = \sqrt{\frac{F_i}{F_e}}$$

where $F_i = \rho A V^2$

 F_e = Elastic force = Elastic stress × Area and $= K \times A = K \times L^2$ $\{:: K = Elastic stress\}$ $M = \sqrt{\frac{\rho A V^2}{K \times L^2}} = \sqrt{\frac{\rho \times L^2 \times V^2}{K \times L^2}} = \sqrt{\frac{V^2}{K/\rho}} = \frac{V}{\sqrt{K/\rho}}$... $\sqrt{\frac{K}{\rho}} = C =$ Velocity of sound in the fluid

But

...