<u>GYANMANJARI INSTITUTE OF TECHNOLOGY</u> <u>MECHANICAL ENGINEERING DEPARTMENT</u> <u>CLASS TEST No.1</u>

Subject: Elements of Mechanical Engg. Semester: 1ST Time: - 2.15 to 3.15

Date: 12-9-2015 Marks: 30

Α	В	Mark
1. What is adiabatic process? Prove with usual notations the law of governing adiabatic process p as $PV^{\gamma} =$ Constant.	1. Explain Isothermal Process. For Isothermal process. Find expression of work done, Change in Internal Energy, Change in Enthalpy and Heat transfer.	07
2.Derive PV/T=C with usual notation	2. With usual notations prove that $Cp - Cv = R$.	07
3. 0.3m3 of air of mass 1 kg at an initial pressure of 5.5 bar expands toa final volume of 0.5m3 If the expansion is according to the law $pv^{1.3} = C$, Find the work done, the change in internal energy and heatreceived or rejected during the process.Take Cv = 0.708 kJ/kg K and R = 0.287 kJ/kg K for air.	3. 1 kg of air at 9 bar pressure and 80o C temperature undergoes a non-flow work polytropic process. The law of expansion is $PV^{1.1} =$ C. The pressure falls to 1.4 bar during process. Calculate (1) Final temperature (2) Work done (3) Change in internal energy (4) Heat exchange. Take R=287 J/kg and $\gamma = 1.4$ for air.	07
4. 3kg of ethane gas is compressed according to law PV ^{1.3} =C from 1.013 bar, 27°C to 8 bar pressure determine (i)heat transfer (ii)workdone (iii)change in internal energy.Cp=1.75 kJ/kg K for ethane. assume ethane as a perfect gas take R0=8314.4 J/kg mol K	4. One cubic meter of air at pressure of 1bar and 60°C is compressed to final pressure 6bar and volume 0.25 m ³ determine (i) mass of air (ii) index n for compression (iii) change in internal energy (iv) heat transfer during compression. Take R=287 J/kg and $\gamma = 1.4$ for air.	07
5. Write a short note on universal gas constant		02