GYANMANJARI INSTITUTE OF TECHNOLOGY MECHANICAL ENGINEERING DEPARTMENT CLASS TEST No. 1

Subject: Elements of Mechanical Engg.
Semester: $1^{\text {ST }}$
Date: 12-9-2015
Time: - 2.15 to 3.15
Marks: 30

A	B	Mark
1.What is adiabatic process? Prove with usual notations the law of governing adiabatic process p as $\mathrm{PV}^{\gamma}=$ Constant.	1.Explain Isothermal Process. For Isothermal process. Find expression of work done, Change in Internal Energy, Change in Enthalpy and Heat transfer.	07
2.Derive $\mathrm{PV} / \mathrm{T}=\mathrm{C}$ with usual notation	2. With usual notations prove that $\mathrm{Cp}-\mathrm{Cv}=$ R.	07
3.0.3m3 of air of mass 1 kg at an initial pressure of 5.5 bar expands toa final volume of 0.5 m 3 If the expansion is according to the law $\mathrm{pv}^{1.3}=\mathrm{C}$, Find the work done, the change in internal energy and heatreceived or rejected during the process.Take $\mathrm{Cv}=0.708 \mathrm{~kJ} / \mathrm{kg}$ K and $\mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ for air.	3.1 kg of air at 9 bar pressure and 80 oC temperature undergoes a non-flow work polytropic process. The law of expansion is $\mathrm{PV}^{1.1}=$ C. The pressure falls to 1.4 bar during process. Calculate (1) Final temperature (2) Work done (3) Change in internal energy (4) Heat exchange. Take $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg}$ and $\gamma=1.4$ for air.	07
4.3 kg of ethane gas is compressed according to law $\mathrm{PV}^{1.3}=\mathrm{C}$ from $1.013 \mathrm{bar}, 27^{\circ} \mathrm{C}$ to 8 bar pressure determine (i)heat transfer (ii)workdone (iii)change in internal energy. $\mathrm{Cp}=1.75 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ for ethane. assume ethane as a perfect gas take $\mathrm{R} 0=8314.4 \mathrm{~J} / \mathrm{kg}$ mol K	4.One cubic meter of air at pressure of 1bar and $60^{\circ} \mathrm{C}$ is compressed to final pressure 6bar and volume $0.25 \mathrm{~m}^{3}$ determine (i) mass of air (ii) index n for compression (iii) change in internal energy (iv) heat transfer during compression. Take $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg}$ and $\gamma=1.4$ for air.	07
5.Write a short note on universal gas constant		02

