Q. 1 A steel fin ($\mathrm{k}=54 \mathrm{~W} / \mathrm{mK}$) with a cross section of an equilateral triangle, 5 mm in side and 80 mm long. It is attached to a plane wall maintained at $400^{\circ} \mathrm{C}$. The ambient air temperature is $50^{\circ} \mathrm{C}$ and convective heat transfer coefficient at surface is $90 \mathrm{~W} / \mathrm{m} 2 \mathrm{~K}$. Calculate the heat dissipation rate from the rod.
Q.2Two rods A and B of equal diameter and equal length, but of different materials are used as fins. The both rods are attached to a plain wall maintained at $180^{\circ} \mathrm{C}$, while they are exposed to air at $30^{\circ} \mathrm{C}$. The end temperature of rod A is $100^{\circ} \mathrm{C}$ while that of the rod B is $80^{\circ} \mathrm{C}$. If thermal conductivity of rod A is $380 \mathrm{~W} / \mathrm{mK}$, calculate the thermal conductivity of rod B . These fins can be assumed as short with end insulated.
Q. 3 Which of the following arrangement of pin fins will give higher heattransfer rate from a hot surface? (i) 6 fins of 10 cm length (ii) 12 fins of 5 cm length. The base temperature of the fin is maintained at $200^{\circ} \mathrm{C}$ and the fin is exposed to a convection environment at $15^{\circ} \mathrm{C}$ with $\mathrm{h}=25 \mathrm{~W} / \mathrm{m}^{2} \mathrm{C}$. Each fin has cross sectional area $2.5 \mathrm{~cm}^{2}$, perimeter 5 cm andis made of a material having thermal conductivity $250 \mathrm{~W} / \mathrm{mC}$. Neglectthe heat loss from the tip of fin
Q.4A metallic rod 1 cm in diameter and 5 cm long, $\mathrm{k}=30 \mathrm{w} / \mathrm{mk}$ protrudes from a wall which is maintained at $100^{\circ} \mathrm{C}$. The rod is insulated at its tip and is exposed to an environment with $\mathrm{h}=50$ $\mathrm{w} / \mathrm{m}^{2} \mathrm{k}$ and air temperature of $30^{\circ} \mathrm{C}$. Calculate the heat dissipation rate, temperature at tip of the fin and fin efficiency.
Q. 1 A steel fin $(\mathrm{k}=54 \mathrm{~W} / \mathrm{mK})$ with a cross section of an equilateral triangle, 5 mm in side and 80 mm long. It is attached to a plane wall maintained at $400^{\circ} \mathrm{C}$. The ambient air temperature is $50^{\circ} \mathrm{C}$ and convective heat transfer coefficient at surface is $90 \mathrm{~W} / \mathrm{m} 2 \mathrm{~K}$. Calculate the heat dissipation rate from the rod. Assume Tip of the rod is insulated.
given out

$$
P=39
$$

$$
\begin{aligned}
& k=54 \mathrm{\omega} / \mathrm{mk} \\
& q=5 \mathrm{~mm} \\
& l=80 \mathrm{~mm} \\
& \begin{array}{l|l|l}
T_{0} & 1^{x} \\
=4000 & 9 & 9 \\
j & 9
\end{array} \\
& =3 \times 5=15 \mathrm{~mm} \\
& =15 \times 10^{-3} \mathrm{~m} \\
& T_{0}=400^{\circ} \mathrm{C} \\
& T_{\alpha}=50^{\circ} \mathrm{C} \\
& h=90 \mathrm{w} / \mathrm{m}^{2} \mathrm{k} \\
& Q_{\text {tin }}=K A_{\text {cs }} m\left(T_{0}-T_{a}\right) \text { tanliml } \\
& =\sqrt{h P A c s \cdot K}\left(T_{0}-T_{a}\right) \text { temhml } \\
& m=\sqrt{\frac{P \cdot h}{\text { Ask }}}=\sqrt{\frac{15 \times 10^{-3} \times 90}{\sqrt{3} / 4 \times 25 \times 10^{-6} \times 04}}=48.06 \mathrm{~m}^{-1} \\
& \text { Ass }=\frac{1}{2} b h=\frac{1}{2} a\left(\frac{\sqrt{3}}{2} a\right)=\frac{\sqrt{3}}{4} a^{2}=\frac{\sqrt{3}}{4} \times 25 \times 10^{-6} \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& m=48.06 \mathrm{~m}^{-1} \\
& \varphi_{\text {fin }}=\text { KAcs } m(70-T \alpha) \tanh m l \\
&=54 \times\left(\frac{\sqrt{3}}{4} \times 25 \times 10^{-6}\right) \times 48.06 \times(400-50) \\
& \quad \times \tanh \left(48.06 \times 80 \times 10^{-3}\right) \\
& \varphi_{\text {fin }}=9.82 \mathrm{w} \quad
\end{aligned}
$$

Q. 2 Two rods A and B of equal diameter and equal length, but of different materials are used as fins. The both rods are attached to a plain wall maintained at $180^{\circ} \mathrm{C}$, while they are exposed to air at $30^{\circ} \mathrm{C}$. The end temperature of $\operatorname{rod} \mathrm{A}$ is $100^{\circ} \mathrm{C}$ while that of the $\operatorname{rod} \mathrm{B}$ is $80^{\circ} \mathrm{C}$. If thermal conductivity of rod A is $380 \mathrm{~W} / \mathrm{mK}$, calculate the thermal conductivity of rod B. These fins can
be assumed as short with end insulated.

$$
\begin{aligned}
& K_{A}=380 \mathrm{w} / \mathrm{mk} \\
& K_{B}=? \\
& T_{0}=180^{\circ} \mathrm{C} \\
& T_{L_{L}}=30^{\circ} \mathrm{C} \\
& T_{\ell_{A}}=100^{\circ} \mathrm{C} \\
& T_{L_{B}}=80^{\circ} \mathrm{C}
\end{aligned}
$$

$$
T l=80^{\circ} \mathrm{C}
$$

Temp. Distribution in core of insulated fin.

$$
\begin{aligned}
\theta & =\theta_{0} \frac{\operatorname{coh} m(l-x)}{\cosh m l} \\
\frac{T-T d}{T_{0}-T d} & =\frac{\operatorname{coh} m(l-x)}{\operatorname{coh} m l} \cdot \frac{i l-T \alpha}{T_{0}-T \alpha}=\frac{1}{\operatorname{coshl}}
\end{aligned}
$$

$$
\text { T at } x=L
$$

$$
\frac{T_{l}-T_{d}}{T_{0}-T_{d s}}=\frac{1}{\cosh m l}
$$

for Rod A

$$
\begin{aligned}
& \frac{100-30}{180-30}=\frac{1}{\operatorname{coh}\left(m_{A l}\right)} \\
& \operatorname{coh}\left(m_{A l}\right)=1.857 \\
& \mathrm{mal}=1.23
\end{aligned}
$$

\rightarrow for rod B

$$
\begin{aligned}
& \frac{80-30}{180-30}=\frac{1}{\operatorname{coh}\left(m_{B} l\right)} \\
& \cosh \left(m_{B} l\right)=2.6 \\
& m_{B} l=1.609
\end{aligned}
$$

Now.

$$
\begin{aligned}
& \frac{m_{A l}}{m_{B} .} \\
&=\frac{1.23}{1.609} \\
& m= \sqrt{\frac{h_{1} P}{A C S}}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{\frac{P \cdot h}{A_{c s} \cdot K_{A}}}=0.764 \\
& \sqrt{\frac{P \cdot h}{A_{C} \cdot K_{B}}}=\sqrt{K_{B}=221.94} \begin{array}{l}
\omega / \mathrm{mK}
\end{array} \\
& \sqrt{\frac{K_{B}}{380}}=0.764
\end{aligned}
$$

Q. 3 Which of the following arrangement of pin fins will give higher heattransfer rate from a hot surface? (i) 6 fins of 10 cm length (ii) 12 fins of 5 cm length. The base temperature of the fin is maintained at $200^{\circ} \mathrm{C}$ and the fin is exposed to a convection environment at $15^{\circ} \mathrm{C}$ with $\mathrm{h}=25 \mathrm{~W} / \mathrm{m}^{2} \mathrm{C}$. Each fin has cross sectional area $2.5 \mathrm{~cm}^{2}$, perimeter 5 cm andis made of a material having thermal conductivity $250 \mathrm{~W} / \mathrm{mC}$. Neglectthe heat loss from the tip of fin
Given Davy

$$
=2.5 \times 10^{-4} \mathrm{~m}^{2} \quad \text { Case }-I
$$

$$
P=5 \mathrm{~cm}=5 \times 10^{-2} \mathrm{~m}
$$

$$
k=250 \mathrm{w} / \mathrm{mc}
$$

$$
\begin{aligned}
& \varphi_{\text {fin }}=\eta\left[K A c s m\left(T_{0}-T_{\alpha}\right) \tanh m l\right] \\
& m=\sqrt{\frac{h \cdot P}{A_{c s} \cdot K}}=\sqrt{\frac{25 \times 5 \times 10^{-2}}{2.5 \times 10^{-4} \times 250}} \\
& m=4.47 \mathrm{~m}^{-1} \\
& \text { case }-I \\
& n=6 \quad l=10 \mathrm{~cm}=10 \times 10^{-2} \mathrm{~m} \\
& m l=4.47 \times 10 \times 10^{-2}=0.447 \\
& Q_{1}=6\left[250 \times 2.5 \times 10^{-4} \times 4.47 \times(200-15)\right. \\
& \left.Q_{1}=89.99 \mathrm{w} \quad \times \tanh \left(4.47 \times 10 \times 10^{-2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Case-II } \quad \begin{aligned}
& n=12 l=5 \mathrm{~cm}=0.05 \mathrm{~m} \\
& \varphi_{2}=n\left[K \text { Acs } m\left(T_{0}-T_{\alpha}\right) \tanh (m l)\right] \\
&=12\left[250 \times 2.5 \times 10^{-4} \times 0444.47 \times(200-15)\right. \\
&\times \tanh (4.47 \times 0.05)] \\
& Q_{2}=94.34 \omega] \\
& \Phi_{2}>Q_{1}
\end{aligned}
\end{aligned}
$$

Q. 4 A metallic rod 1 cm in diameter and 5 cm long, $\mathrm{k}=30 \mathrm{w} / \mathrm{mk}$ protrudes from a wall which is maintained at $100^{\circ} \mathrm{C}$. The rod is insulated at its tip and is exposed to an environment with $\mathrm{h}=50$ $\mathrm{w} / \mathrm{m}^{2} \mathrm{k}$ and air temperature of $30^{\circ} \mathrm{C}$. Calculate the heat dissipation rate, temperature at tip of the fin and fin efficiency.
given Data

$$
\begin{aligned}
& d=1 \mathrm{~cm}=1 \times 10^{-2} \mathrm{~m} \\
& l=5 \mathrm{~cm}=5 \times 10^{-2} \mathrm{~m} \\
& k=30 \mathrm{\omega} / \mathrm{mk} \\
& T_{0}=100^{\circ} \mathrm{C} \\
& h=50 \mathrm{w} / \mathrm{m}^{2} \mathrm{k} \\
& T_{d e}=30^{\circ} \mathrm{C} \\
& Q_{\text {fin }}=\text { ? } \\
& 7 l=\text { ? } \\
& \eta_{\text {fin }}=\text { ? } \\
& Q_{\text {fin }}=\sqrt{\text { n.P.Acs.K }}\left(T_{0}-T_{\alpha}\right) \tan \mathrm{Ml} \\
& m=\sqrt{\frac{h \cdot P}{A c s k}}=\sqrt{\frac{h \cdot \pi d}{k \cdot \pi / 4 d^{2}}}=\sqrt{\frac{h}{k} \cdot \frac{h}{d}} \\
& =\sqrt{\frac{4 \times 50}{30 \times 0.01}}=25.82 \mathrm{~m}^{-1} \\
& Q_{\text {fin }}=\sqrt{h \cdot \pi d \times \pi / 4 d^{2} \times k\left(T_{0} \cdot T_{\alpha}\right) \tanh m l} \\
& =\sqrt{\pi \times 0.01 \times 50 \times \pi / 4 \times(0.01)^{2} \times 30}(100-30) \\
& \tan h\left(25.82 \times 5 \times 10^{-2}\right)
\end{aligned}
$$

b)

$$
\begin{aligned}
& \theta=\theta_{0} \frac{\cosh m(l-x)}{\cosh m l} \\
& x=l \\
& \frac{T_{l}-T_{d e}}{T_{0}-T_{d e}}=\frac{1}{\text { culumd }} \\
& =\frac{\tanh (25.82 \times 0.05)}{25.82 \times 0.05} \\
& \frac{T_{l}-30}{100-30}=\frac{1}{\cosh (25.82 \times 0.05)} \\
& T_{\ell}=65.80^{\circ} \mathrm{C} \\
& \text { c) fin efficiency } \\
& \eta_{\sin }=\frac{\tan 4 m l}{m l} \\
& \eta=0.665 \\
& \eta_{f m}=66.57 \%
\end{aligned}
$$

