SUBJECT NAME : Heat Transfer

SUBJECT CODE : 3151909

Topic: General Heat Conduction Equation in spherical coordinate

Prof. Krunal Khiraiya

- Three prime coordinate systems:
- rectangular $T(x, y, z, t)$
- cylindrical $T(r, \phi, z, t)$
- spherical $T(r, \phi, \theta, t)$.

(a) Rectangular coordinates

(b) Cylindrical coordinates

(c) Spherical coordinates

Let consider small element

- Consider an elemental volume having the coordinate (r, \varnothing, Θ) for three dimensional heat conduction analysis as shown in figure
- The volume of element $=d r$ rd Θ rsin $\Theta d \varnothing$
- Let $\mathrm{m}=$ mass of element
- $\rho=$ density of element
- $\mathrm{Qg}=$ internal heat generation per unit time
- $q g=$ internal heat generation per unit time per unit volume
- $\mathrm{C}=$ Specific heat
- $\mathrm{K}=$ thermal conductivity

Heat flow through r- Θ plane : \varnothing direction

$$
\begin{aligned}
Q_{\phi}^{\prime}= & -k(d r \cdot r d \theta) \frac{\partial t}{r \cdot \sin \theta \cdot \partial \phi} d \tau \\
Q_{(\phi+d \phi)}^{\prime} & =Q_{\phi}^{\prime}+\frac{\partial}{r \cdot \sin \theta \cdot \partial \phi}\left(Q_{\phi}^{\prime}\right) r \sin \theta \cdot d \phi \\
d Q_{\phi}^{\prime} & =Q_{\phi}^{\prime}-Q^{\prime}{ }_{(\phi+\mathrm{d} \phi)} \\
& =-\frac{1}{r \sin \theta} \cdot \frac{\partial}{\partial \phi}\left(Q_{\phi}^{\prime}\right) r \sin \theta \cdot d \phi \\
& =-\frac{1}{r \sin \theta} \cdot \frac{\partial}{\partial \phi}\left[-k(d r \cdot r d \theta) \frac{1}{r \sin \theta} \cdot \frac{\partial t}{\partial \phi} \cdot d \tau\right] r \sin \theta \cdot d \phi \\
& =k(d r \cdot r d \theta \cdot r \sin \theta \cdot d \phi) \frac{1}{r^{2} \sin ^{2} \theta} \cdot \frac{\partial^{2} t}{\partial \phi^{2}} d \tau
\end{aligned}
$$

Heat flow through r- \varnothing plane : Θ direction

$$
\begin{aligned}
Q_{\theta}^{\prime} & =-k(d r \cdot r \sin \theta \cdot d \phi) \frac{\partial t}{r \partial \theta} \cdot d \tau \\
Q_{(\theta+d \theta)}^{\prime} & =Q_{\theta}^{\prime}+\frac{\partial}{r \partial \theta}\left(Q_{\theta}^{\prime}\right) r d \theta \\
d Q_{\theta}^{\prime}= & Q_{\theta}^{\prime}-Q_{(\theta+d \theta)}^{\prime} \\
& =-\frac{\partial}{r \cdot \partial \theta}\left(Q_{\theta}^{\prime}\right) r \cdot d \theta \\
& =-\frac{\partial}{r \cdot \partial \theta}\left[-k(d r \cdot r \sin \theta \cdot d \phi) \frac{\partial t}{r \cdot \partial \theta} \cdot d \tau\right] r \cdot d \theta \\
& =\frac{k}{r} \frac{d r \cdot r d \phi \cdot r d \theta}{r} \frac{\partial}{\partial \theta}\left[\sin \theta \cdot \frac{\partial t}{\partial \theta}\right] d \tau \\
& =k(d r \cdot r d \theta \cdot r \sin \theta \cdot d \phi) \frac{1}{r^{2} \sin \theta} \cdot \frac{\partial}{\partial \theta}\left[\sin \theta \cdot \frac{\partial t}{\partial \theta}\right] d \tau
\end{aligned}
$$

Heat flow through Θ - \varnothing plane : r direction

$$
Q_{r}^{\prime}=-k(r d \theta \cdot r \sin \theta \cdot d \phi) \frac{\partial t}{\partial r} \cdot \partial \tau
$$

$$
\begin{aligned}
Q_{(r+d r)}^{\prime} & =Q_{r}^{\prime}+\frac{\partial}{\partial r}\left(Q_{r}^{\prime}\right) d r \\
d Q_{r}^{\prime} & =Q_{r}^{\prime}-Q_{(r+d r)}^{\prime} \\
& =-\frac{\partial}{\partial r}\left(Q_{r}^{\prime}\right) d r \\
& =-\frac{\partial}{\partial r}\left[-k(r d \theta \cdot r \sin \theta \cdot d \phi) \frac{\partial t}{\partial r} \cdot d \tau\right] d r \\
& =k d \theta \cdot \sin \theta \cdot d \phi d r \frac{\partial}{\partial r}\left[r^{2} \cdot \frac{\partial t}{\partial r}\right] d \tau
\end{aligned}
$$

Net Heat Accumulated in the element
$=k d r \cdot r d \theta \cdot r \sin \theta \cdot d \phi\left[\frac{1}{r^{2} \sin ^{2} \theta} \cdot \frac{\partial^{2} t}{\partial \phi^{2}}+\frac{1}{r^{2} \sin \theta} \cdot \frac{\partial}{\partial \theta}\left(\sin \theta \cdot \frac{\partial t}{\partial \theta}\right)+\frac{1}{r^{2}} \cdot \frac{\partial}{\partial r}\left(r^{2} \cdot \frac{\partial t}{\partial r}\right)\right] d \tau$
B. Heat generated within the element $\left(Q_{g}^{\prime}\right)$:

The total heat generated within the element is given by,

$$
Q_{g}^{\prime}=q_{g}(d r \cdot r d \theta \cdot r \sin \theta \cdot d \phi) d \tau
$$

C. Energy stored in the element :

The increase in thermal energy in the element is equal to

$$
\rho(d r \cdot r d \theta \cdot r \sin \theta \cdot d \phi) c \cdot \frac{\partial t}{\partial \tau} \cdot d \tau
$$

Now,

$$
(A)+(B)=(C)
$$

...Energy balance/equation
$\therefore \quad k d r \cdot r d \theta \cdot r \sin \theta \cdot d \phi\left[\frac{1}{r^{2} \sin ^{2} \theta} \cdot \frac{\partial^{2} t}{\partial \phi^{2}}+\frac{1}{r^{2} \sin \theta} \cdot \frac{\partial}{\partial \theta}\left(\sin \theta \cdot \frac{\partial t}{\partial \theta}\right)+\frac{1}{r^{2}} \cdot \frac{\partial}{\partial r}\left(r^{2} \cdot \frac{\partial t}{\partial r}\right)\right] \cdot d \tau$

$$
+q_{g}(d r . r d \theta \cdot r \sin \theta \cdot d \phi) d \tau=\rho(d r . r d \theta \cdot r \sin \theta \cdot d \phi) c \cdot \frac{\partial t}{\partial \tau} \cdot d \tau
$$

Dividing both sides by $k .(d r . r d \theta . r \sin \theta \cdot d \phi) d \tau$, we get

$$
\begin{aligned}
& {\left[\frac{1}{r^{2} \sin ^{2} \theta} \cdot \frac{\partial^{2} t}{\partial \phi^{2}}+\frac{1}{r^{2} \sin \theta} \cdot \frac{\partial}{\partial \theta}\left(\sin \theta \cdot \frac{\partial t}{\partial \theta}\right)+\frac{1}{r^{2}} \cdot \frac{\partial}{\partial r}\left(r^{2} \cdot \frac{\partial t}{\partial r}\right)\right]+\frac{q_{g}}{k}} \\
& \quad=\frac{\rho c}{k} \cdot \frac{\partial t}{\partial \tau}=\frac{1}{\alpha} \cdot \frac{\partial t}{\partial \tau}
\end{aligned}
$$

Heat Conduction Through hollow and composite Spheres

Heat Conduction Through hollow and composite Spheres

Let,
$r_{1}, r_{2}=$ Inner and outer radii,
$t_{1}, t_{2}=$ Temperatures of inner and outer surfaces, and
$k=$ Constant thermal conductivity of the material with the given temperature range.
The general heat conduction equation in spherical coordinates is given as follows :

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial t}{\partial r}\right)+\frac{1}{r^{2} \sin ^{2} \phi} \cdot \frac{\partial^{2} t}{\partial \phi^{2}}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial t}{\partial \theta}\right)+\frac{q_{g}}{k}=\frac{1}{\alpha} \cdot \frac{\partial t}{\partial \tau}
$$

Heat Conduction Through hollow and composite Spheres

For steady state $\left(\frac{\partial t}{\partial \tau}=0\right)$, unidirectional heat flow in the radial direction $\{t \neq f(\theta, \phi)\}$ and with no heat generation ($q_{g}=0$), the above equation reduces to

$$
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \cdot \frac{d t}{d r}\right)=0
$$

or, $\quad \frac{d}{d r}\left(r^{2} \cdot \frac{d t}{d r}\right)=0$
as $\quad \frac{1}{r^{2}} \neq 0$
or, $\quad r^{2} \cdot \frac{d t}{d r}=C$ (a constant)
Integrating the above equation, we obtain

$$
t=-\frac{C}{r}+C_{1}
$$

(where $C_{1}=$ a constant of integration)
Using the following boundary conditions, we have

$$
\begin{array}{lr}
\text { At } r=r_{1}, t=t_{1} ; \text { At } r & =r_{2}, t=t_{2} \\
\therefore & t_{1}=-\frac{C}{r_{1}}+C_{1} \\
t_{2} & =-\frac{C}{r_{2}}+C_{1} \tag{ii}
\end{array}
$$

Heat Conduction Through hollow and composite Spheres

From (i) and (ii), we have
and,

$$
\begin{aligned}
& C=\frac{\left(t_{1}-t_{2}\right) r_{1} r_{2}}{r_{1}-r_{2}} \\
& C_{1}=t_{1}+\frac{\left(t_{1}-t_{2}\right) r_{1} r_{2}}{r_{1}\left(r_{1}-r_{2}\right)}
\end{aligned}
$$

Substituting the values of these constants in eqn. (2.73), we get

$$
\begin{aligned}
t & =-\frac{\left(t_{1}-t_{2}\right) r_{1} r_{2}}{r\left(r_{1}-r_{2}\right)}+t_{1}+\frac{\left(t_{1}-t_{2}\right) r_{1} r_{2}}{r_{1}\left(r_{1}-r_{2}\right)} \\
t & =-\frac{\left(t_{1}-t_{2}\right)}{r\left(1 / r_{2}-1 / r_{1}\right)}+t_{1}+\frac{\left(t_{1}-t_{2}\right)}{r_{1}\left(1 / r_{2}-1 / r_{1}\right)} \\
t & =t_{1}+\frac{\left(t_{1}-t_{2}\right)}{\left(1 / r_{2}-1 / r_{1}\right)}\left[\frac{1}{r_{1}}-\frac{1}{r}\right] \\
\frac{t-t_{1}}{t_{2}-t_{1}} & =\frac{1 / r-1 / r_{1}}{1 / r_{2}-1 / r_{1}} \\
\frac{t-t_{1}}{t_{2}-t_{1}} & =\frac{r_{2}}{r}\left[\frac{r-r_{1}}{r_{2}-r_{1}}\right] \quad \text { [Dimensionless form] }
\end{aligned}
$$

Heat Conduction Through hollow and composite Spheres

$$
\begin{aligned}
Q & =-k A \frac{d t}{d r} \\
& =-k \cdot 4 \pi r^{2} \cdot \frac{d}{d r}\left[t_{1}+\frac{\left(t_{1}-t_{2}\right)}{\left(1 / r_{2}-1 / r_{1}\right)}\left(\frac{1}{r_{1}}-\frac{1}{r}\right)\right] \\
& =-k \cdot 4 \pi r^{2} \cdot \frac{t_{1}-t_{2}}{\left(1 / r_{2}-1 / r_{1}\right)} \times-\left(-\frac{1}{r^{2}}\right) \\
& =-k \cdot 4 \pi r^{2} \cdot \frac{\left(t_{1}-t_{2}\right)}{\left(\frac{r_{1}-r_{2}}{r_{1} \cdot r_{2}}\right)} \times \frac{1}{r^{2}} \\
& =-4 \pi k \frac{\left(t_{1}-t_{2}\right) r_{1} r_{2}}{\left(r_{1}-r_{2}\right)}=\frac{4 \pi k\left(t_{1}-t_{2}\right) r_{1} r_{2}}{\left(r_{2}-r_{1}\right)}=\frac{\left(t_{1}-t_{2}\right)}{\left(r_{2}-r_{1}\right) / 4 \pi k r_{1} r_{2}} \\
Q & =\frac{\left(t_{1}-t_{2}\right)}{\left[\frac{\left(r_{2}-r_{1}\right)}{4 \pi k r_{1} r_{2}}\right]}\left[=\frac{\Delta t}{R_{t h}}\right]
\end{aligned}
$$

i.e.
where the term $\left(r_{2}-r_{1}\right) / 4 \pi k r_{1} r_{2}$ is the thermal resistance $\left(R_{t h}\right)$ for heat conduction through a hollow sphere.

Logarithmic Mean Area for the hollow cylinder

(a) Hollow cylinder

$$
\begin{aligned}
& Q=\frac{\left(t_{1}-t_{2}\right)}{\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi k L}} \\
& Q=\frac{\left(t_{1}-t_{2}\right)}{\frac{\left(r_{2}-r_{1}\right)}{k A_{m}}}
\end{aligned}
$$

A_{m} is so chosen that heat flow through cylinder and plane wall will be equal for the same thermal potential.

$$
\therefore \begin{aligned}
\frac{\left(t_{1}-t_{2}\right)}{\frac{\operatorname{In}\left(r_{2} / r_{1}\right)}{2 \pi k L}} & =\frac{\left(t_{1}-t_{2}\right)}{\frac{\left(r_{2}-r_{1}\right)}{k A_{m}}} \\
\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi k L} & =\frac{\left(r_{2}-r_{1}\right)}{k A_{m}} \\
A_{m} & =\frac{2 \pi L\left(r_{2}-r_{1}\right)}{\ln \left(r_{2} / r_{1}\right)}=\frac{2 \pi L r_{2}-2 \pi L r_{1}}{\ln \left(2 \pi L r_{2} / 2 \pi L r_{1}\right)} \\
A_{m} & =\frac{A_{0}-A_{i}}{\ln \left(A_{0}-A_{i}\right)}
\end{aligned}
$$

