E-Course on Internal Combustion Engine Subject code: 3171923

Chapter: Introduction

Comparison of SI and CI Engines

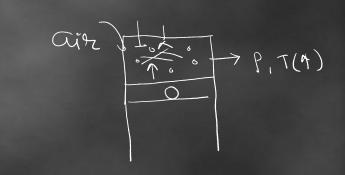
- Difference in thermodynamic and operating variables
- comparison of performance characteristics
- comparison of initial and maintenance costs
- application of SI and CI engine.

Classification of I.C.ENGINES

I.C.ENGINES are may be classified according to

Type of fuel used as

- (1)Petrol engine
- (2) Diesel engine
- (3)Gas engines


Nature of thermodynamic cycle as:

- (1)Otto cycle engine
- (2) Diesel engine cycle
- (3) Duel or mixed cycle engine

Classification of I.C.ENGINES

Number of stroke per cycle as:

- (1) Four stroke engine
- (2) Two stroke engine

Method of ignition as:

- (1) Spark Ignition engines (SI)
 (Mixture of air and fuel is ignited by electric spark)
- (2) Compression Ignition engines (CE)

 (The fuel is ignited as it comes in contact with hot Compressed air)

Classification of I.C.ENGINES

Method of Cooling as:

- (1) Air cooled engines
- (2) Water cooled engines

Speed of the engines as:

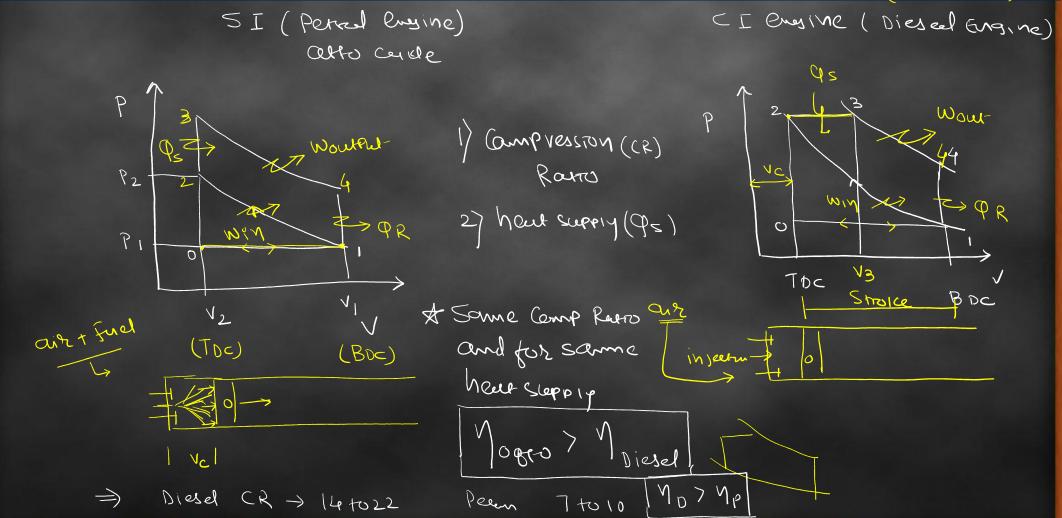
- (1) Low speed engines
- (2) Medium speed engines
- (3) High speed engines

Number of cylinder as:

- (1) Single cylinder engines
- (2) Multi cylinder engines

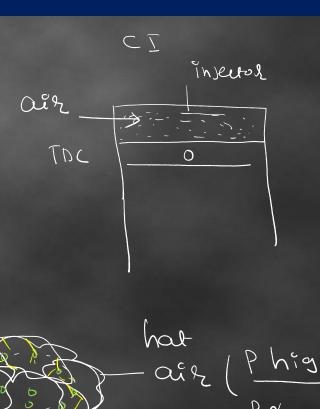
TCE -> headCourtsustron -> headCourtsustron
Lugine

Difference between Petrol and Diesel Engine


PETROL ENGINE	DIESEL ENGINE
Works on Otto cycle .	Works on Diesel Cycle .
Petrol is used as fuel .	Diesel is used as fuel .
Air and fuel mixture enters in cylinder during suction stroke.	Only Air is drawn during the suction stroke.
Low compression ratio ranging from 6 to 10.	High compression ratio ranging from 14 to 20.
The compressed charge is ignited by the spark plug.	The fuel injector is used in Diesel engine.
High engine speed of about 3000 RPM .	Low to medium engine speed ranging from 500 to 1500 RPM.
The Thermal efficiency is lower due to lower Compression ratio .	The Thermal efficiency is higher due to high Compression ratio .
Lighter in weight because maximum pressure and Temperature is less .	Heavier in Weight because maximum pressure and temperature is high .
Less Costlier .	More Costlier .
Maintenance cost is Less .	Maintenance cost is Slightly higher .
Easier starting even in cold weather .	Difficult to start in cold weather .
Running cost Higher because petrol is Costlier .	Running cost is Less because diesel is Cheaper.

* Difference in thermodynamic and operating variables

- 1. Thermodynamics Cycle
- 2. Combustion Phenomenon
- 3. Compression Ratio
- 4. Operating Pressure
- 5. Operating Speed
- 6. Distribution of Fuel between cylinder
- 7. Exhaust gas temperature
- 8. Starting


1. Thermodynamics Cycle

(Dualcude)

2. Combustion Phenomenon

Specie ingrasson Single frommo

3. Compression Ratio

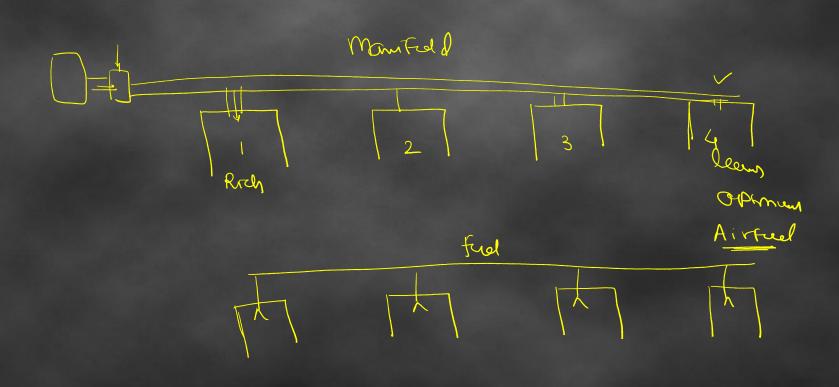
4. Operating Pressure

CI 30 to 50 bour J >> moetered Strengter high SI 7 to 15 bour J

CR of CI = 3 to 4 CR of SI

Proces CI = 1.3 to 1.4 Process SI

5. Operating speed


bhp (breve horse power)

bhp > f(H)

max bhp > max H (speed)

SI engine is higher speed compare to CI

6. Distribution of Fuel between cylinder

7. Exhaust gas temperature

$$M_{CI} > M_{SI}$$
 $Q_{S} \rightarrow CI \rightarrow Dewer Rehoest Ress CI$
 $SI \rightarrow high$
 II

8. Starting

```
SI Stauring Cusy
CI Diffourty to Store (Cold)
```