Ex. 1 A simple Carburetor has the ventury of throat diameter 8 cm and the coefficient of discharge is 0.94 . the fuel orifice has diameter of 0.5 cm and it's coefficient of discharge is 0.7 . find air-fuel ratio if the pressure drop amount to 0.14 bar when (a) nozzle tip is neglected (b) Nozzle tip is taken into account and it is equal to 0.5 cm . Assume density of fuel as $780 \mathrm{~kg} / \mathrm{m} 3$ and density of air as $1.293 \mathrm{~kg} / \mathrm{m} 3$ Neglect compressibility of air
\Rightarrow given Data

$$
\begin{array}{ll}
d_{q}=8 \mathrm{~cm}=8 \times 10^{-2} \mathrm{~m} & \rho_{q}=1.293 \mathrm{~kg} / \mathrm{m}^{3} \\
c_{d q}=0.94 & \rho_{f}=780 \mathrm{~kg} / \mathrm{m}^{3} \\
d_{F}=0.5 \mathrm{~cm}=0.5 \times 10^{-2} \mathrm{~m} & \\
c_{d_{F}}=0.7 & \\
\Delta p=0.14 \mathrm{bar}=0.14 \times 10^{5} \mathrm{p} / \mathrm{m}^{2} &
\end{array}
$$

Case-(a) Nozsle tir is Regleeted
Arr - fuel Ratto

$$
\begin{aligned}
\frac{m_{q}}{m_{j}} & =\frac{c_{d q}}{c_{d f}} \times \frac{A_{q}}{A_{f}} \times \sqrt{\rho_{q} / \rho f} \\
& =\frac{c_{d q}}{c_{d f}} \times \frac{\pi / q_{i} d_{q}}{\pi / d_{f}} \times \sqrt[\rho_{q} / \rho \hat{F}]{ } \\
& =\frac{0.94}{0.7} \times \frac{\left(8 \times 10^{-2}\right)^{2}}{\left(0.5 \times 10^{-2}\right)^{2}} \times \sqrt{\frac{1.293}{780}} \\
m_{g} /_{m f} & =13.99
\end{aligned}
$$

Case-(b) when Norape tip is Comsidend

$$
\begin{aligned}
& \frac{m q}{m f}=\frac{\frac{c d q}{c d f} \times \frac{A_{q}}{A f} \times \sqrt{\frac{\rho_{q}}{\rho_{F}}} \times \sqrt{\frac{\Delta p}{\Delta p-2 g g_{f}}}}{13.99} \\
& \frac{m q}{m_{F}}=13.99 \times \sqrt{\frac{0.14 \times 10^{5}}{014 \times 10^{5}-}} \\
& 0.005 \times 9.81 \\
& \times 780 \\
& =13.99 \times 1.0013692 \\
& \frac{m_{\mathrm{g}}}{m_{F}}=14.009 \\
& \frac{m_{F}}{}
\end{aligned}
$$

Ex. 2 A:F ratio of mixture supplied to an engine by carburetor is $15: 1$. The fuel consumption of engine is $7.5 \mathrm{~kg} /$ hour. The diameter of venture is 2.2 cm find the diameter of fuel nozzle if tip of nozzle is 4 mm . Take the following specification for calculation. Density of fuel used $=750 \mathrm{~kg} / \mathrm{m} 3 \mathrm{Cd}$ of air $=0.82$ Cd of fuel $=0.7$ atmospheric pressure $=1.013$ bar and atmospheric temperature $=25 \mathrm{c}$
\rightarrow given Data

$$
\begin{aligned}
& \frac{m_{g}}{m_{f}}=15 / 1 \\
& m_{f}=7.5 \mathrm{log} / \mathrm{hr} \\
& d_{q}=2.2 \mathrm{~cm}=2.2 \times 10^{-2} \mathrm{~m} \\
& d_{f}=?
\end{aligned}
$$

$$
\begin{aligned}
& 2=4 \mathrm{~mm}=4 \times 10^{-3} \mathrm{~m} \\
& \rho_{f}=750 \mathrm{lg} / \mathrm{m}^{3} \\
& c_{d q}=0.82 \\
& c_{d f}=0.7
\end{aligned}
$$

$$
\begin{aligned}
P_{\text {atm }} & =1.013 \text { ban } \\
& =1.013 \times 10^{5} \mathrm{M} / \mathrm{m}^{2} \\
\text { Tarn } & =25^{\circ} \mathrm{C} \\
& =25+273 \\
& =298 \mathrm{k}
\end{aligned}
$$

Aiv-fruel Rarto

$$
\begin{aligned}
\frac{m_{a}}{m_{f}} & =\frac{c_{d q}}{c_{d f}} \times \frac{A_{q}}{A_{f}} \times \sqrt{\frac{\rho_{q}}{\rho_{f}}} \times \sqrt{\frac{\Delta p}{\Delta p-2 g \rho_{f}}} \\
\frac{15}{1} & =\frac{0.82}{0.7} \times \frac{\left(2.2 \times 10^{-2}\right)^{2}}{d_{f}^{2}} \times \sqrt{\frac{1.2 q}{750}} \times \sqrt{\frac{1.013 \times 10^{5}}{1.013 \times 10^{5}-4 \times 10^{-3} \times 9.81} \times 750} \\
d_{f}^{2} & =1.566 \times 10^{-6} \mathrm{~m}^{2} \\
d_{f} & =1.25 \times 10^{-3} \mathrm{~m} \\
d_{f} & =0.125 \mathrm{~cm}
\end{aligned}
$$

Ex. 3 A simple jet carburetor is required to supply 6 kg of air per minute and 0.45 kg of fuel of density $740 \mathrm{~kg} / \mathrm{m} 3$. The air is initially at 1.013 bar and $27^{\circ} \mathrm{C}$. Calculate the throat diameter of the choke for a flow velocity of $92 \mathrm{~m} / \mathrm{s}$, velocity coefficient of 0.8 . If the pressure drop across the fuel metering orifice is 0.75 of that at the choke, calculate orifice diameter assuming $\mathrm{Cd}=0.60$.
\rightarrow

$$
\begin{aligned}
& m_{a}=6 \mathrm{~kg} / \mathrm{min} \\
& m_{f}=0.45 \mathrm{~kg} / \mathrm{min} \\
& \rho_{f}=740 \mathrm{~kg} / \mathrm{m}^{3} \\
& \rho_{a}=1.29 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

$$
\begin{array}{ll}
P_{1}=1.013 \mathrm{bar}=1.013 \times 10^{5} \mathrm{M} / \mathrm{m}^{2} \\
T_{1}=27+273=300 \mathrm{~K} & C d q=0.8 \\
V_{2}=92 \mathrm{~m} / \mathrm{s} & C d f=0.60 \\
(\Delta P) f=0.75(\Delta P)_{q} &
\end{array}
$$

\Rightarrow APplying SFEE

$$
\begin{aligned}
& h_{1}+\frac{v_{1}^{2}}{2}=h_{2}+v_{2}^{2} / 2 \\
& h_{1}=C_{p} T_{1} \quad h_{2}=c_{p} T_{2} \quad v_{1}=0 \quad c_{p}=1.005 \mathrm{kst} \mathrm{kgk} \\
& C_{p} T_{1}=C_{p} T_{2}+v_{2}^{2} / 2 \\
& 1005 \times 300=1005 \times T_{2}+(92)^{2} / 2 \\
& T_{2}=295.79 \mathrm{k} \\
& \frac{p_{2}}{p_{1}}=\left(T_{2} / T_{11}\right) \\
& p_{2}=0.9642
\end{aligned}
$$

$$
\begin{aligned}
& \Delta P_{a}=P_{1}-P_{2}=1.013-0.9642 \\
&=0.04889 \mathrm{lar} \\
&=4889 \mathrm{M}_{1 \mathrm{~m}^{2}} \\
& P_{2}=\rho_{q} R T_{2} \\
& 0.9642 \times 10^{5}=\rho_{q} \times 281 \times 295.79 \Rightarrow \rho_{q}=1.1357 \mathrm{~kg} / \mathrm{m}^{3} \\
& m_{q}=c d_{q} A_{q} \sqrt{2 \rho_{q}(\Delta p)_{q}} \\
& \frac{6}{60}=0.8 \times \pi / 4 d^{2} \times \sqrt{2 \times 1.1351} \times 4889 \\
& d_{a} \\
&=0.03886 \mathrm{~m} \\
& d_{q}=3.88 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{m}_{f}=c_{f} \times A_{f} \times \sqrt{2 \rho_{F}(\Delta P)_{F}} \\
&(\Delta P)_{F}=075\left(\Delta P h_{q}\right. \\
&=0.75 \times 4889 \\
&=3666.75 \mathrm{M} / \mathrm{m}^{2} \\
& \frac{0.45}{60}=0.75 \times \pi / 4 \times d_{f}^{2} \times \sqrt{2 \times 740 \times 3666.75} \\
& d_{F}=0.2338 \mathrm{~cm} \\
& d_{F}=2.388 \mathrm{~mm}
\end{aligned}
$$

