Q. 1

Wen ${ }^{112 t}$ Determine 2 the total pressure on a circular plate of diameter 1.5 m which is placed vertically in water in such a way that the centre of the plate is 2 m below the free surface of water. Find the position of centre of pressure also.

$$
\begin{aligned}
& \text { Given Date } \\
& D=1.5 \mathrm{~m} \\
& \bar{h}=2.0 \mathrm{~m} \\
& S=1000 \mathrm{kes} / \mathrm{m}^{3} \\
& g=10 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Pressure fore on sufore } \\
& \begin{aligned}
F & =59 \mathrm{Ah} \\
& =1000 \times 10 \times \pi / 4(1.5)^{2} \times 2 \\
F & =3.54 \times 10^{4} \mathrm{M}
\end{aligned}
\end{aligned}
$$

$$
\text { Centre of pressure }\left(h^{*}\right)
$$

$$
\begin{aligned}
I_{G} & =\pi / 64 D^{4} \\
& =\pi / 64(1.5)^{4} \\
& =0.248 \mathrm{~m}^{4}
\end{aligned}
$$

$$
h^{*}=\frac{I G}{A \bar{h}}+\bar{h}
$$

$$
h^{*}=\frac{0.248}{1.767 \times 2}+2 \frac{=0.0703+2}{\underline{h^{*}=2.0703 \mathrm{~m}}}
$$

A rectangular plate $3 \mathrm{~m} \times 5 \mathrm{~m}$ is immersed vertically in water such that the 3 m side is parallel to the water surface. Determine the hydrostatic force and the depth of centre of pressure if the top edge of the plate is 2 m below water surface.

Given Data

$$
\begin{aligned}
& A=3 \times 5=15 \mathrm{~m}^{2} \\
& I_{G}=\frac{b d^{3}}{12}=\frac{3 \times 5^{3}}{12} \\
& S=1000 \mathrm{lcg} / \mathrm{m}^{3} \\
& g=10 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
I_{G}=\frac{b d^{3}}{12}=\frac{3 \times 5^{3}}{12}=31.25 \mathrm{~m}^{4} \quad 5 \mathrm{~m}
$$

$$
\begin{aligned}
& \text { Total Pressure fore } \\
& F=89 A \bar{h} \\
&=1000 \times 10 \times 15 \times 4.5 \\
&=675 \times 10^{3} \mathrm{~N} \\
&=675 \mathrm{kM}
\end{aligned}
$$

$$
\text { Centre of Pressure } h^{*}
$$

$$
h^{*}=\frac{I_{G}}{A \bar{h}}+\bar{h}
$$

$$
=\frac{31.25}{15 \times 4.5}+4.5
$$

$$
=4.962 \mathrm{~m}
$$

Q-2
A rectangular plane surface 2 m wide and 3 m high immerged in water, it plan is making an angle 45 with the free surface of water. The upper edge of rectangular plate is 1.5 m below the free surface. Calculate the position of center of pressure.
Given Dare
$A=3 \times 2=6 \mathrm{~m}^{2}$
$\bar{h}=1.5+A G \sin \theta$
$=1.5+1.5 \sin 45$
$=2.56 \mathrm{~m}$
$I_{G}=\frac{b d^{3}}{12}=\frac{2 \times 3^{3}}{12}=4.5 \mathrm{~m}^{4}$

(i) Toted Pressure Force

$$
\begin{aligned}
F & =99 A \bar{h} \\
& =1000 \times 10 \times 6 \times 2.56 \\
& =150.72 \mathrm{kM}
\end{aligned}
$$

(ii) Centre of pressure $\left(h^{*}\right)$

$$
\begin{aligned}
h^{*}=\frac{I G \sin ^{2} \theta}{A \bar{h}}+\bar{h} & =\frac{4.5 \times(\sin 45)^{2}}{6 \times 2.56}+2.56 \\
& =2.707 \mathrm{~m}
\end{aligned}
$$

Q. 3

Wednesday equiriateral triangular plate having 2.5 m side is immersed in water with its base coinciding with the free surface. Calculate total force and center of pressure if, i) the plate is vertical and, ii) angle of inclination of the plate with the free surface is 60 .

$$
\begin{aligned}
& \text { Case } I) \\
& h=\sqrt{(2.5)^{2}-\left(\frac{2.5}{2}\right)^{2}} I h / 2.5=\bar{h} \\
& =2.165 \mathrm{~m} \\
& \bar{h}=h / 3=2.16573=0.72 \mathrm{~m}
\end{aligned}
$$

$A=\frac{1}{2} \times b \times h=1 / 2 \times 2.5 \times 2.165=2.706 \mathrm{~m}^{2}$

Total Pressure (F)

$$
\begin{aligned}
F & =99 \mathrm{~A} \overline{\mathrm{~h}} \\
& =1000 \times 10 \times 2.706 \times 0.72 \\
& =19.11 \mathrm{kM}
\end{aligned}
$$

$\operatorname{cose}-$ II

$$
\begin{aligned}
\bar{h} & =\bar{y} \sin \theta \\
& =0.72 \sin 60^{\circ} \\
& =0.623 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Total Pressie fore } \\
& F=99 A \overline{4} \\
&=1000 \times 10 \times 2.706 \times 0.623 \\
&=16.53 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ceurne of pressie } \\
& h^{*}=\frac{I G \sin ^{2} \theta}{A 5}+\bar{h} \\
& =\frac{(0.7047)(\sin 60)^{2}}{2.706 \times 0.623}+0.623
\end{aligned}
$$

$$
h^{*}=0.936 \mathrm{~m}
$$

${ }^{1031 \mathrm{Am}}$ A rectangular gate that is 2 m wide is located in the vertical wall of a tank containing water as shown in figure.2. It is desired to have the gate open automatically when the depth of water above the top of the gate reaches 10 m . (a) At what distance " d " should the frictionless horizontal shaft be located? (b) What is the magnitude of the force on the gate when it opens?

A circular lamina 125 cm in diameter is immersed in water so that the distance of it's edge measured vertically below the free surface varies 60 cm to 150 cm . Find the total force due to water on one side of the lamina, and the vertical distance of the center of pressure below the water surface.

$$
\begin{aligned}
& A=\pi / 4 d^{2} \\
& \bar{h}=h_{1}+\frac{A C}{2} \\
& =\pi / 4 \times(1.25)^{2} \\
& =60+\frac{90}{2} \\
& \begin{aligned}
& =1.22 \mathrm{~m} \\
I_{G} & =\pi / 64 \mathrm{~d}^{4}
\end{aligned} \\
& =1.05 \mathrm{~m} \\
& \text { Total pressure (F) } \\
& F=99 A \overline{4} \\
& =1000 \times 10 \times 1.22 \times 1.05 \\
& =12640.61 \mathrm{~N} \\
& \triangle A B C \sin \theta=\frac{A C}{A B} \\
& \sin \theta=\frac{150-60}{125}=0.72 \\
& Q=46.05^{\circ} \\
& \text { Centre of Pressure (} h^{*} \text {) } \\
& h^{*}=\frac{I_{G} \sin ^{2} \theta}{\Delta \bar{h}}+\bar{h}=\frac{0.11 \times(\sin 46.05)^{2}}{1.22 \times 1.05}+1.05 \Rightarrow h^{*}=1.098 \mathrm{~m}
\end{aligned}
$$

