A Rectangular sluice gate (4 m wide and 6 m long) hinged at point o as shown in fig. the gate is kept close by a weight fixed to the gate. Total weight of gate is 1500 kN (weight of gate and weight fixed to gate). The center of gravity of the weight and gate is at G. Calculate depth of Water (h) so that cause the gate open.
areas of gate $A=6 \times 4=24 \mathrm{~m}^{2}$

$$
\begin{aligned}
\bar{h} & =h-G^{\prime} A^{\prime} \\
& =h-\left(O A^{\prime}-O G^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
\sin 45^{\circ}=\frac{O A^{\prime}}{O A}=\frac{O A^{\prime}}{6} & O A^{\prime} & =6 \sin 45^{\circ} & =4.2426 \mathrm{~m} \\
\tan 45^{\circ}=\frac{O G^{\prime}}{G G^{\prime}}=\frac{O G^{\prime}}{1.2} & O G^{\prime} & =1.2 \tan 45^{\circ} & O G^{\prime}=1.2 \mathrm{~m}
\end{aligned} \quad G^{\prime} A^{\prime}=O G^{\prime}+G^{\prime} A^{\prime} \quad O A^{\prime}-O G^{\prime}
$$

$$
\bar{h}=h-(4.2426-1.2)=h-3.0426
$$

Total Pressure Force

$$
\begin{aligned}
F & =\rho 9 A \bar{h} \\
& =1000 \times 9.81 \times 24 \times(h-3.0426) \\
& =235.44(h-3.0426) \mathrm{kN}
\end{aligned}
$$

Centre of Pressmen (h^{*})

$$
h^{*}=\frac{I_{G} \sin ^{2} \theta}{A \bar{h}}+\bar{h}
$$

$$
I_{G}=\frac{b d^{3}}{12}=\frac{4 \times 6^{3}}{12}=72 \mathrm{~m}^{4}
$$

$$
\begin{aligned}
& h^{*}=\frac{72 \times \sin ^{2} 45}{24 \times(h-3.0426)}+(h-3.0426) \\
& h^{*}=\frac{1.5}{h-3.0426}+(h-3.0426)
\end{aligned}
$$

low Taking moment at hinged Post

$$
\begin{aligned}
\omega \times G G^{\prime} & =F \times O P \\
1500 \times 1.2 & =235.44(h-3.0426) \times O P
\end{aligned}
$$

$$
\begin{align*}
& O P=\frac{7.6452}{h-3.0426} \quad \text { (I) } \quad \sin 45^{\circ}=\frac{O P}{O P} \\
& O P= O P^{\prime} \times 1.42 \quad O P=O P^{\prime} / \sin 45^{\circ} \\
&=\left(h^{*}-\bar{h}+O G^{\prime}\right) 1.42 \\
&= 1.42\left[\frac{1.5}{h-3.0426}+(h-3.0426)-(h-3 / 0426)+1.2\right] \\
&=\left.1.42\left[\frac{1.5}{h-3.0426}+1.2\right]+1.2\right] \\
& \frac{7.6452}{h-3.0426}=1.42\left[\frac{1.5}{h-3.0426}+1.2(h-3.0426)\right] \\
& 7.6452=1.42[1.5+1
\end{align*}
$$

Q. 2

A rectangular gate that is 2 m wide is located in the vertical wall of a tank containing water as shown in figure.2. It is desired to have the gate open automatically when the depth of water above the top of the gate reaches 10 m . (a) At what distance "d" should the frictionless horizontal shaft be located? (b) What is the magnitude of the force on the gate when it opens?

Given Date

$$
\begin{aligned}
\bar{h} & =10+4 / 2 \\
& =12 \mathrm{~m}
\end{aligned}
$$

$\omega=2, \quad h=4$
area, $=4 \times 2=8 \mathrm{~m}^{2}$

$$
\begin{aligned}
& \text { Total Pressme force } \\
& \begin{aligned}
F & =99 \mathrm{Ah} \\
& =1000 \times 9.81 \times 8 \times 12 \\
& =941.76 \mathrm{kM}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
h^{*} & =\frac{I G}{A \bar{h}}+\bar{h} \\
& =\frac{10.66}{8 \times 12}+12=12.11 \mathrm{~m} .
\end{aligned}
$$

location of shaft from battomedese of gate

$$
d=(10+4)-12.11=1.8 \mathrm{~m}
$$

