GYANMANJARI INSTITUTE OF TECHNOLOGY MECHANICAL ENGINEERING DEPARTMENT
 CLASS TEST No. 2

Subject: Elements of Mechanical Engg. Instruction:

Date: 19.03.2016
Marks: 30

1. All questions are compulsory

2. Make suitable assumption wherever necessary

Q. N	A	B	Mark
1	Derive expression of efficiency for diesel cycle	Derive expression of efficiency for otto cycle	07
2	1 kg of air at 9 bar pressure and $80^{\circ} \mathrm{C}$ temperature undergoes a non-flow work poly tropic process. The law of expansion is PV1.1 = C. The pressure falls to 1.4 bar during process. Calculate (1) Final temperature (2) Work done (3) Change in internal energy (4) Heat exchange. Take $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg}$ and $\gamma=1.4$ for air.	One cubic meter of air at pressure of 1.5 bar and $80^{\circ} \mathrm{C}$ is compressed to final pressure 8 bar and volume 0.28 m 3 . Determine (i) mass of air (ii) index of ' n ' compression (iii) change in internal energy (iv) Heat transfer during compression. Take $\gamma=1.4$ and $\mathrm{R}=287$ $\mathrm{J} / \mathrm{kgK}$.	07
3	With neat sketch explain construction and working of combined separating and throttling calorimeter		07
4	Determine the enthalpy and internal energy of 4 kg of steam at a pressure 26 bar (abs.), (i) when the dryness fraction of the steam is 0.76 (ii) when the steam is dry and saturated (iii) when the steam is superheated to $300^{\circ} \mathrm{C}$. Take the specific heat of superheated steam as $2.29 \mathrm{~kJ} / \mathrm{kgK}$.	3.5 kg of steam at a pressure of 17 bar and temperature of $250^{\circ} \mathrm{C}$ is expanded until the pressure becomes 3.8 bar. The dryness fraction of steam is then 0.78 . Calculate change in internal energy. Take $\mathrm{C}_{\mathrm{p}}=2.1 \mathrm{~kJ} / \mathrm{kgK}$.	07
5	State the function and location of the following (i)Fusible plug (ii)Steam stop valve	State the function and location of the following (i)Feed check valve (ii)Economizer	02

Use Following Values

$\mathbf{P}(\mathbf{b a r})$	$\mathbf{T}_{\text {sat }}\left({ }^{\circ} \mathrm{C}\right)$	$\mathbf{h}_{\mathrm{f}}(\mathrm{kJ} / \mathrm{kg})$	$\mathbf{h}_{\mathrm{fg}}(\mathrm{kJ} / \mathrm{kg})$	$\mathbf{h}_{\mathrm{g}}(\mathrm{kJ} / \mathrm{kg})$	$\mathbf{v}_{\mathrm{f}}\left(\mathrm{m}^{\mathbf{3}} / \mathrm{kg}\right)$	$\mathbf{V}_{\mathrm{g}}\left(\mathrm{m}^{\mathbf{3}} / \mathrm{kg}\right)$
$\mathbf{1 7}$	$\mathbf{2 0 4 . 3}$	$\mathbf{8 7 1 . 8}$	$\mathbf{1 9 2 1 . 5}$	$\mathbf{2 7 9 3 . 4}$	$\mathbf{0 . 0 0 1 1 6 3}$	$\mathbf{0 . 1 1 7}$
$\mathbf{2 6}$	$\mathbf{2 2 6 . 0}$	$\mathbf{9 7 1 . 7}$	$\mathbf{1 8 2 9 . 6}$	$\mathbf{2 8 0 1 . 4}$	$\mathbf{0 . 0 0 1 2 0 1}$	$\mathbf{0 . 0 7 6 9}$
$\mathbf{3 . 8}$	$\mathbf{1 4 1 . 8}$	$\mathbf{5 9 6 . 8}$	$\mathbf{2 1 3 8 . 6}$	$\mathbf{2 7 3 5 . 3}$	$\mathbf{0 . 0 0 1 0 8 2}$	$\mathbf{0 . 4 8 6}$

