GYANMANJARI INSTITUTE OF TECHNOLOGY MECHANICAL ENGINEERING DEPARTMENT CLASS TEST No.2

Subject: Elements of Mechanical Engg. Date: 19.03.2016

Instruction: Marks: 30

1. All questions are compulsory

2. Make suitable assumption wherever necessary

Q. N	A	В	Mark			
1	Derive expression of efficiency for diesel	Derive expression of efficiency for otto	07			
	cycle	cycle				
2	1 kg of air at 9 bar pressure and 80° C	One cubic meter of air at pressure of 1.5	07			
	temperature undergoes a non-flow work	bar and 80°C is compressed to final				
	poly tropic process. The law of expansion	pressure 8 bar and volume 0.28 m3.				
	is PV1.1 = C. The pressure falls to 1.4 bar Determine (i) mass of air (ii) in					
	during process. Calculate (1) Final	'n' compression (iii) change in internal				
	temperature (2) Work done (3) Change in	energy (iv) Heat transfer during				
	internal energy (4) Heat exchange. Take	compression. Take $\gamma = 1.4$ and R= 287				
	R=287 J/kg and γ = 1.4 for air.	J/kgK.				
3	With neat sketch explain construction and working of combined separating and					
	throttling calorimeter					
4	Determine the enthalpy and internal	3.5 kg of steam at a pressure of 17 bar	07			
	energy of 4 kg of steam at a pressure 26 and temperature of 250°C is ex					
	bar (abs.), (i) when the dryness fraction of	until the pressure becomes 3.8 bar. The				
	the steam is 0.76 (ii) when the steam is dry	dryness fraction of steam is then 0.78.				
	and saturated (iii) when the steam is	Calculate change in internal energy.				
	superheated to 300°C. Take the specific	Take $C_p=2.1 \text{ kJ/kgK}$.				
	heat of superheated steam as 2.29 kJ/kgK.					
5	State the function and location of the	State the function and location of the	02			
	following	following				
	(i)Fusible plug (ii)Steam stop valve	(i)Feed check valve (ii)Economizer				

Use Following Values

P (bar)	T _{sat} (°C)	h _f (kJ/kg)	h _{fg} (kJ/kg)	h _g (kJ/kg)	$v_f (m^3/kg)$	V_{g} (m ³ /kg)
17	204.3	871.8	1921.5	2793.4	0.001163	0.117
26	226.0	971.7	1829.6	2801.4	0.001201	0.0769
3.8	141.8	596.8	2138.6	2735.3	0.001082	0.486